Robust estimators in semi-functional partial linear regression models

Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of eve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boente, G.
Otros Autores: Vahnovan, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11599caa a22009497a 4500
001 PAPER-15228
003 AR-BaUEN
005 20230518204555.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84995406997 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JMVAA 
100 1 |a Boente, G. 
245 1 0 |a Robust estimators in semi-functional partial linear regression models 
260 |b Academic Press Inc.  |c 2017 
270 1 0 |m Boente, G.; Departamento de Matemáticas, FCEyN, UBA, Ciudad Universitaria, Pabellón 1, Argentina; email: gboente@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ait-Saïdi, A., Ferraty, F., Kassa, R., Vieu, P., Cross-validated estimations in the single functional index model (2008) Statistics, 42, pp. 475-494 
504 |a Aneiros-Pérez, G., Ling, N., Vieu, P., Error variance estimation in semi-functional partially linear regression models (2015) J. Nonparametr. Stat., 27, pp. 316-330 
504 |a Aneiros-Pérez, G., Vieu, P., Semi-functional partial linear model (2006) Statist. Probab. Lett., 11, pp. 1102-1110 
504 |a Aneiros-Pérez, G., Vieu, P., Nonparametric time series prediction: a semi-functional partial linear modelling (2008) J. Multivariate Anal., 99, pp. 834-857 
504 |a Aneiros-Pérez, G., Vieu, P., Automatic estimation procedure in partial linear model with functional data (2011) Statist. Papers, 52, pp. 751-771 
504 |a Aneiros-Pérez, G., Vieu, P., Testing linearity in semi-parametric functional data analysis (2013) Comput. Statist., 28, pp. 413-434 
504 |a Azzedine, N., Laksaci, A., Ould-Said, E., On robust nonparametric regression estimation for a functional regressor (2008) Statist. Probab. Lett., 78, pp. 3216-3221 
504 |a Benhenni, K., Ferraty, F., Rachdi, M., Vieu, P., Local smoothing regression with functional data (2007) Comput. Statist., 22, pp. 353-369 
504 |a Bianco, A., Boente, G., Robust estimators in semiparametric partly linear regression models (2004) J. Statist. Plann. Inference, 122, pp. 229-252 
504 |a Bianco, A., Boente, G., Robust estimators under a semiparametric partly linear autoregression model: asymptotic behavior and bandwidth selection (2007) J. Time Series Anal., 28, pp. 274-306 
504 |a Bianco, A., Boente, G., Martinez, E., Robust tests in semiparametric partly linear models (2006) Scand. J. Statist., 33, pp. 435-450 
504 |a Boente, G., Fraiman, R., Robust nonparametric regression estimation for dependent observations (1989) Ann. Statist., 17, pp. 1242-1256 
504 |a Boente, G., Fraiman, R., Meloche, J., Robust plug-in bandwidth estimators in nonparametric regression (1997) J. Statist. Plann. Inference, 57, pp. 109-142 
504 |a Boente, G., Pardo-Fernández, J.C., Robust testing for superiority between two regression curves (2016) Comput. Statist. Data Anal., 97, pp. 151-168 
504 |a Boente, G., Rodriguez, D., Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis (2008) Comput. Statist. Data Anal., 52, pp. 2808-2828 
504 |a Boente, G., Vahnovan, A., Strong convergence of robust equivariant nonparametric functional regression estimators (2015) Statist. Probab. Lett., 100, pp. 1-11 
504 |a Cantoni, E., Ronchetti, E., Resistant selection of the smoothing parameter for smoothing splines (2001) Stat. Comput., 11 (2), pp. 141-146 
504 |a Chagny, G., Roche, A., Adaptive estimation in the functional nonparametric regression model (2016) J. Multivariate Anal., 146, pp. 105-118 
504 |a Chen, D., Hall, P., Müller, H.G., Single and multiple index functional regression models with nonparametric link (2011) Ann. Statist., 39, pp. 1720-1747 
504 |a Cuevas, A., A partial overview of the theory of statistics with functional data (2014) J. Statist. Plann. Inference, 147, pp. 1-23 
504 |a Ferraty, F., Goia, A., Salinelli, E., Vieu, P., Functional projection pursuit regression (2013) TEST, 22, pp. 293-320 
504 |a Ferraty, F., Laksaci, A., Tadj, A., View, P., Rate of uniform consistency for nonparametric estimates with functional variables (2010) J. Statist. Plann. Inference, 140, pp. 335-352 
504 |a Ferraty, F., Laksaci, A., Vieu, P., Estimating some characteristics of the conditional distribution in nonparametric functional models (2006) Stat. Inference Stoch. Process., 9, pp. 47-76 
504 |a Ferraty, F., Peuch, A., Vieu, P., Modèle à indice fonctionnel simple (2003) C. R. Acad. Sci. Paris, 336, pp. 1025-1028 
504 |a Ferraty, F., Romain, Y., The Oxford Handbook of Functional Data Analysis (2010), Oxford University Press; Ferraty, F., Vieu, P., The functional nonparametric model and application to spectrometric data (2002) Comput. Statist., 17, pp. 545-564 
504 |a Ferraty, F., Vieu, P., Nonparametric Functional Data Analysis: Theory and Practice (2006), Springer New York; Gervini, D., Outlier detection and trimmed estimation for general functional data (2012) Statist. Sinica, 22, pp. 1639-1660 
504 |a Ghement, I., Ruiz, M., Zamar, R., Robust estimation of error scale in nonparametric regression models (2008) J. Statist. Plann. Inference, 138, pp. 3200-3216 
504 |a Goia, A., Vieu, P., A partitioned Single Functional Index Model (2015) Comput. Statist., 30, pp. 673-692 
504 |a Goia, A., Vieu, P., An introduction to recent advances in high/infinite dimensional statistics (2016) J. Multivariate Anal., 146, pp. 1-6 
504 |a González-Manteiga, W., Aneiros-Pérez, G., Testing in partial linear regression models with dependent errors (2003) J. Nonparametr. Stat., 15, pp. 93-111 
504 |a Härdle, W., Liang, H., Gao, J., Partially Linear Models (2000), Springer New York; He, X., Zhu, Z., Fung, W., Estimation in a semiparametric model for longitudinal data with unspecified dependence structure (2002) Biometrika, 89, pp. 579-590 
504 |a Henry, G., Rodriguez, D., Robust estimators in partly linear regression models on Riemannian manifolds (2016) Comm. Statist. Theory Methods, , http://www.tandfonline.com/doi/full/10.1080/03610926.2013.775302, (in press) 
504 |a Horváth, L., Kokoszka, P., Inference for Functional Data with Applications (2012), Springer New York; Hubert, M., Vandervieren, E., An adjusted boxplot for skewed distributions (2008) Comput. Statist. Data Anal., 52, pp. 5186-5201 
504 |a Leung, D., Cross-validation in nonparametric regression with outliers (2005) Ann. Statist., 33, pp. 2291-2310 
504 |a Leung, D., Marriott, F., Wu, E., Bandwidth selection in robust smoothing (1993) J. Nonparametr. Stat., 4, pp. 333-339 
504 |a Linton, O., Second order approximations in the partially linear regression model (1995) Econometrica, 63, pp. 1079-1112 
504 |a Maronna, R., Martin, D., Yohai, V.J., Robust Statistics: Theory and Methods (2006), John Wiley & Sons New York; Rachdi, M., Vieu, P., Nonparametric regression for functional data: automatic smoothing parameter selection (2007) J. Statist. Plann. Inference, 137, pp. 2784-2801 
504 |a Ramsay, J., Silverman, B., Applied Functional Data Analysis: Methods and Case Studies (2002), Springer New York; Ramsay, J., Silverman, B., Functional Data Analysis (2005), Springer New York; Robinson, P., Root −n− consistent semiparametric regression (1988) Econometrica, 56, pp. 931-954 
504 |a Rousseeuw, P., Least median of squares regression (1984) J. Amer. Statist. Assoc., 79, pp. 871-880 
504 |a Shang, H.L., Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density (2013) Comput. Statist. Data Anal., 67, pp. 185-198 
504 |a Shang, H.L., Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density (2014) J. Nonparametr. Stat., 26, pp. 599-615 
504 |a Shang, H.L., Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density (2014) Comput. Statist., 29, pp. 829-848 
504 |a Shin, H., Partial functional linear regression (2009) J. Statist. Plann. Inference, 139, pp. 3405-3418 
504 |a Speckman, P., Kernel smoothing in partial linear models (1988) J. R. Stat. Soc. Ser. B Stat. Methodol., 50, pp. 413-436 
504 |a Sun, Y., Genton, M.G., Functional Boxplots (2011) J. Comput. Graph. Statist., 20, pp. 316-334 
504 |a Vahnovan, A., Estimadores robustos en modelos de regresión noparamétricos funcionales y en modelos semi-funcionales parcialmente lineales (2013), http://sedici.unlp.edu.ar/handle/10915/44589, (Ph.D. thesis) National University of La Plata Available at; Wang, F., Scott, D., The L1 method for robust nonparametric regression (1994) J. Amer. Statist. Assoc., 89, pp. 65-76 
504 |a Zhang, D., Lin, X., Sowers, M.F., Assessing the effects of reproductive hormone profiles on bone mineral density using functional two-stage mixed models (2007) Biometrics, 63, pp. 351-362 
520 3 |a Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. To solve the problem of atypical observations when the covariates of the nonparametric component are functional, robust estimates for the regression parameter and regression operator are introduced. Consistency results of the robust estimators and the asymptotic distribution of the regression parameter estimator are studied. The reported numerical experiments show that the resulting estimators have good robustness properties. The benefits of considering robust estimators is also illustrated on a real data set where the robust fit reveals the presence of influential outliers. © 2016 Elsevier Inc.  |l eng 
593 |a Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina 
593 |a IMAS, CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina 
593 |a Departamento de Matemáticas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 50 y 115, La Plata, Argentina 
593 |a CONICET, Godoy Cruz 2290. 1425, Buenos Aires, Argentina 
690 1 0 |a FUNCTIONAL DATA 
690 1 0 |a KERNEL SMOOTHERS 
690 1 0 |a PARTIAL LINEAR MODELS 
690 1 0 |a ROBUST ESTIMATION 
700 1 |a Vahnovan, A. 
773 0 |d Academic Press Inc., 2017  |g v. 154  |h pp. 59-84  |p J. Multivariate Anal.  |x 0047259X  |w (AR-BaUEN)CENRE-126  |t Journal of Multivariate Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995406997&doi=10.1016%2fj.jmva.2016.10.005&partnerID=40&md5=eb01d5e6ba6090fa84792642f15bcc27  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jmva.2016.10.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0047259X_v154_n_p59_Boente  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0047259X_v154_n_p59_Boente  |y Registro en la Biblioteca Digital 
961 |a paper_0047259X_v154_n_p59_Boente  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76181