Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites

This work demonstrates that the size of ZnO nanorods (ZnONR) with similar aspect ratio determines several physicochemical and microbiological properties of thermoplastic starch composites (TPS/ZnONR) at a given concentration of ZnONRs. A combination of sol-gel and hydrothermal methods was developed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Guz, L.
Otros Autores: Famá, L., Candal, R., Goyanes, Silvia Nair
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:This work demonstrates that the size of ZnO nanorods (ZnONR) with similar aspect ratio determines several physicochemical and microbiological properties of thermoplastic starch composites (TPS/ZnONR) at a given concentration of ZnONRs. A combination of sol-gel and hydrothermal methods was developed to synthesize ZnONR with different sizes but similar aspect ratios. Starch composites containing 1 wt.% of ZnONR were prepared by casting. Composites with smaller size nanorods (ZnONR-S) showed more efficiency in shielding UVA radiation and had a higher solubility and water vapor permeability than those with larger nanorods (ZnONR-L). Mechanical properties, biodegradability and antibacterial activity were also influenced by the size of the ZnONR. X-ray diffraction analysis showed that composites with ZnONR-S maintained the typical B-V type starch structure, intensifying the V-type starch structure peaks, while composite with ZnONR-L induced the formation of an amorphous structure, preventing starch retrogradation during storage. Properties affected by nanorods size are fundamental in determining composite applications. © 2016 Elsevier Ltd
Bibliografía:ASTM D.-, Annual book of ASTM (2002), American Society for Testing and Materials West Conshohocken, USA; Alebooyeh, R., Nafchi, A., Jokr, M., The effects of ZnO nanorods on the characteristics of sago starch biodegradable films (2012) Journal of Chemical Health Risks, 2 (4)
Angles, M.N., Dufresne, A., Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior (2001) Macromolecules, 34 (9), pp. 2921-2931
(1995), Official methods of analysis Association of Official Analytical Chemists, Washington, DC (1995); Applerot, G., Lipovsky, A., Dror, R., Perkas, N., Nitzan, Y., Lubart, R., Gedanken, A., Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS mediated cell injury (2009) Advanced Functional Materials, 19 (6), pp. 842-852
Arfat, Y.A., Benjakul, S., Prodpran, T., Sumpavapol, P., Songtipya, P., Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles (2014) Food Hydrocolloids, 41, pp. 265-273
Arora, A., Padua, G.W., Review: Nanocomposites in food packaging (2010) Journal of Food Science, 75 (1), pp. R43-R49
Bertuzzi, M.A., Castro Vidaurre, E.F., Armada, M., Gottifredi, J.C., Water vapor permeability of edible starch based films (2007) Journal of Food Engineering, 80 (3), pp. 972-978
Cano, A., Fortunati, E., Cháfer, M., Kenny, J.M., Chiralt, A., González-Martínez, C., Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol) (2015) Food Hydrocolloids, 48, pp. 84-93
Chen, Y., Liu, C., Chang, P.R., Anderson, D.P., Huneault, M.A., Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers (2009) Polymer Engineering & Science, 49 (2), pp. 369-378
Chen, Y., Liu, C., Chang, P.R., Cao, X., Anderson, D.P., Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time (2009) Carbohydrate Polymers, 76 (4), pp. 607-615
Chen, Y.W., Qiao, Q., Liu, Y.C., Yang, G.L., Size-controlled synthesis and optical properties of small-sized ZnO nanorods (2009) The Journal of Physical Chemistry C, 113 (18), pp. 7497-7502
de Azeredo, H.M.C., Mattoso, L.H.C., McHugh, T.H., Nanocomposites in food packaging–A review (2011), INTECH Open Access Publisher; EFSA Panel on Food Contact Materials, E., Flavourings and Processing Aids, Scientific opinion on the safety assessment of the substance zinc oxide, nanoparticles, for use in food contact materials (2016) EFSA Journal, 14 (3), p. 8
Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S., Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice (2010) Innovative Food Science & Emerging Technologies, 11 (4), pp. 742-748
Famá, L., Bittante, A.M.B.Q., Sobral, P.J.A., Goyanes, S., Gerschenson, L.N., Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites (2010) Materials Science and Engineering: C, 30 (6), pp. 853-859
Famá, L., Rojo, P.G., Bernal, C., Goyanes, S., Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydrate Polymers, 87 (3), pp. 1989-1993
García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42 (8), pp. 976-982
Gutiérrez, T.J., Tapia, M.S., Pérez, E., Famá, L., Structural and mechanical properties of edible films made from native and modified cush–cush yam and cassava starch (2015) Food Hydrocolloids, 45, pp. 211-217
Jiménez, A., Fabra, M.J., Talens, P., Chiralt, A., Edible and biodegradable starch films: A review (2012) Food and Bioprocess Technology, 5 (6), pp. 2058-2076
Kanmani, P., Rhim, J.-W., Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles (2014) Carbohydrate Polymers, 106, pp. 190-199
Laohakunjit, N., Noomhorm, A., Effect of plasticizers on mechanical and barrier properties of rice starch film (2004) Starch – Stärke, 56 (8), pp. 348-356
Le Bail, P., Bizot, H., Ollivon, M., Keller, G., Bourgaux, C., Buléon, A., Monitoring the crystallization of amylose–lipid complexes during maize starch melting by synchrotron x-ray diffraction (1999) Biopolymers, 50 (1), pp. 99-110
Li, G.R., Hu, T., Pan, G.L., Yan, T.Y., Gao, X.P., Zhu, H.Y., Morphology-function relationship of ZnO: Polar planes, oxygen vacancies, and activity (2008) The Journal of Physical Chemistry C, 112 (31), pp. 11859-11864
Liao, L., Lu, H.B., Li, J.C., He, H., Wang, D.F., Fu, D.J., Zhang, W.F., Size dependence of gas sensitivity of ZnO nanorods (2007) The Journal of Physical Chemistry C, 111 (5), pp. 1900-1903
Ma, H., Williams, P.L., Diamond, S.A., Ecotoxicity of manufactured ZnO nanoparticles–a review (2013) Environmental Pollution, 172, pp. 76-85
Maiti, S., Ray, D., Mitra, D., Role of crosslinker on the biodegradation behavior of starch/polyvinylalcohol blend films (2012) Journal of Polymers and the Environment, 20 (3), pp. 749-759
Maizura, M., Fazilah, A., Norziah, M.H., Karim, A.A., Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil (2007) Journal of Food Science, 72 (6), pp. C324-C330
Mathew, A.P., Thielemans, W., Dufresne, A., Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers (2008) Journal of Applied Polymer Science, 109 (6), pp. 4065-4074
Mclaren, A., Valdes-Solis, T., Li, G., Tsang, S.C., Shape and size effects of ZnO nanocrystals on photocatalytic activity (2009) Journal of the American Chemical Society, 131 (35), pp. 12540-12541
Medina Jaramillo, C., González Seligra, P., Goyanes, S., Bernal, C., Famá, L., Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer (2015) Starch – Stärke, 67 (9-10), pp. 780-789
Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H., Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement (2015) Carbohydrate Polymers, 127, pp. 291-299
Morsy, M.K., Khalaf, H.H., Sharoba, A.M., El-Tanahi, H.H., Cutter, C.N., Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products (2014) Journal of Food Science, 79 (4), pp. M675-M684
Nafchi, A.M., Alias, A.K., Mahmud, S., Robal, M., Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide (2012) Journal of Food Engineering, 113 (4), pp. 511-519
Nafchi, A.M., Nassiri, R., Sheibani, S., Ariffin, F., Karim, A., Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide (2013) Carbohydrate Polymers, 96 (1), pp. 233-239
Nair, S., Sasidharan, A., Rani, V.D., Menon, D., Nair, S., Manzoor, K., Raina, S., Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells (2009) Journal of Materials Science: Materials in Medicine, 20 (1), pp. 235-241
Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., Dubois, P., PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics (2013) European Polymer Journal, 49 (11), pp. 3471-3482
Seligra, P.G., Medina Jaramillo, C., Famá, L., Goyanes, S., Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent (2016) Carbohydrate Polymers, 138, pp. 66-74
Shankar, S., Teng, X., Li, G., Rhim, J.-W., Preparation, characterization and antimicrobial activity of gelatin/ZnO nanocomposite films (2015) Food Hydrocolloids, 45, pp. 264-271
Shi, R., Liu, Q., Ding, T., Han, Y., Zhang, L., Chen, D., Tian, W., Ageing of soft thermoplastic starch with high glycerol content (2007) Journal of Applied Polymer Science, 103 (1), pp. 574-586
Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D., Biodegradable polymers for food packaging: A review (2008) Trends in Food Science & Technology, 19 (12), pp. 634-643
Siqueira, G., Bras, J., Dufresne, A., Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites (2008) Biomacromolecules, 10 (2), pp. 425-432
Sorrentino, A., Tortora, M., Vittoria, V., Diffusion behavior in polymer?clay nanocomposites (2006) Journal of Polymer Science Part B: Polymer Physics, 44 (2), pp. 265-274
Soykeabkaew, N., Supaphol, P., Rujiravanit, R., Preparation and characterization of jute- and flax-reinforced starch-based composite foams (2004) Carbohydrate Polymers, 58 (1), pp. 53-63
Sugarman, B., Zinc and infection (1983) Review of Infectious Diseases, 5 (1), pp. 137-147
Tankhiwale, R., Bajpai, S.K., Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging (2012) Colloids and Surfaces B: Biointerfaces, 90, pp. 16-20
Torres, F., Troncoso, O., Torres, C., Díaz, D., Amaya, E., Biodegradability and mechanical properties of starch films from Andean crops (2011) International Journal of Biological Macromolecules, 48 (4), pp. 603-606
van Soest, J.J., Hulleman, S., De Wit, D., Vliegenthart, J., Crystallinity in starch bioplastics (1996) Industrial Crops and Products, 5 (1), pp. 11-22
Vieira, M.G.A., da Silva, M.A., dos Santos, L.O., Beppu, M.M., Natural-based plasticizers and biopolymer films: A review (2011) European Polymer Journal, 47 (3), pp. 254-263
Wang, J., Kulkarni, A.J., Ke, F.J., Bai, Y.L., Zhou, M., Novel mechanical behavior of ZnO nanorods (2008) Computer Methods in Applied Mechanics and Engineering, 197 (41-42), pp. 3182-3189
Wu, T.-M., Chen, E.-C., Isothermal and nonisothermal crystallization kinetics of poly (ε-caprolactone)/multi-walled carbon nanotube composites (2006) Polymer Engineering & Science, 46 (9), pp. 1309-1317
Wynne-Jones, S., Blanshard, J.M.V., Hydration studies of wheat starch, amylopectin, amylose gels and bread by proton magnetic resonance (1986) Carbohydrate Polymers, 6 (4), pp. 289-306
Xie, F., Pollet, E., Halley, P.J., Avérous, L., Starch-based nano-biocomposites (2013) Progress in Polymer Science, 38 (10-11), pp. 1590-1628
Yi, S.-H., Choi, S.-K., Jang, J.-M., Kim, J.-A., Jung, W.-G., Low-temperature growth of ZnO nanorods by chemical bath deposition (2007) Journal of Colloid and Interface Science, 313 (2), pp. 705-710
Zhang, L., Jiang, Y., Ding, Y., Povey, M., York, D., Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) (2007) Journal of Nanoparticle Research, 9 (3), pp. 479-489
Zhang, Y., Chen, Y., Westerhoff, P., Crittenden, J., Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles (2009) Water Research, 43 (17), pp. 4249-4257
ISSN:01448617
DOI:10.1016/j.carbpol.2016.11.041