Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway

Background: Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). L...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bagnato, C.
Otros Autores: Prados, M.B, Franchini, G.R, Scaglia, N., Miranda, S.E, Beligni, M.V
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: BioMed Central Ltd. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 27432caa a22017057a 4500
001 PAPER-15145
003 AR-BaUEN
005 20230518204548.0
008 170725s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85014803832 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BGMEE 
100 1 |a Bagnato, C. 
245 1 0 |a Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway 
260 |b BioMed Central Ltd.  |c 2017 
270 1 0 |m Beligni, M.V.; Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Argentina; email: mvbeligni@mdp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances (2008) Plant J, 54, pp. 621-639 
504 |a Han, S.-F., Jin, W.-B., Tu, R.-J., Wu, W.-M., Biofuel production from microalgae as feedstock: current status and potential (2015) Crit Rev Biotechnol, 35, pp. 255-268 
504 |a Passell, H., Dhaliwal, H., Reno, M., Wu, B., Ben Amotz, A., Ivry, E., Gay, M., Ayer, N., Algae biodiesel life cycle assessment using current commercial data (2013) J Environ Manage, 129, pp. 103-111 
504 |a Du, Z.-Y., Benning, C., Triacylglycerol accumulation in photosynthetic cells in plants and algae (2016) Subcell Biochem, 86, pp. 179-205 
504 |a Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R., Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor (2009) Biotechnol Bioeng, 102, pp. 100-112 
504 |a Benvenuti, G., Lamers, P.P., Breuer, G., Bosma, R., Cerar, A., Wijffels, R.H., Barbosa, M.J., Microalgal TAG production strategies: why batch beats repeated-batch (2016) Biotechnol Biofuels, 9, p. 64 
504 |a Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H., Lin, C.-S., Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration (2009) Bioresour Technol, 100, pp. 833-838 
504 |a Simionato, D., Sforza, E., Corteggiani Carpinelli, E., Bertucco, A., Giacometti, G.M., Morosinotto, T., Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation (2011) Bioresour Technol, 102, pp. 6026-6032 
504 |a Boyle, N.R., Page, M.D., Liu, B., Blaby, I.K., Casero, D., Kropat, J., Cokus, S.J., Karpowicz, S.J., Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas (2012) J Biol Chem, 287, pp. 15811-15825 
504 |a Davidi, L., Levin, Y., Ben-Dor, S., Pick, U., Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil (2015) Plant Physiol, 167, pp. 60-79 
504 |a Weng, L.-C., Pasaribu, B., Ping Lin, I., Tsai, C.-H., Chen, C.-S., Jiang, P.-L., Hastie, L.C., Belda, C.A., Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from Aiptasia pulchella (2014) Sci Rep, 4, pp. 41-49 
504 |a Yang, D., Song, D., Kind, T., Ma, Y., Hoefkens, J., Fiehn, O., Li, Y., Lan, C., Lipidomic analysis of Chlamydomonas reinhardtii under nitrogen and sulfur deprivation (2015) PLoS One, 10 
504 |a Adl, S.M., Simpson, A.G.B., Lane, C.E., Lukeš, J., Bass, D., Bowser, S.S., Brown, M.W., Hampl, V., The revised classification of eukaryotes (2012) J Eukaryot Microbiol, 59, pp. 429-493 
504 |a Janse, I., Rijssel, M., Hall, P.-J., Gerwig, G.J., Gottshal, J., Prins, R.A., The storage glucan of Phaeocystis globosa (Prymnesiophyceae) cells (1996) J Phycol, 32, pp. 382-387 
504 |a Koornhuyse, N., Libessart, N., Delrue, B., Zabawinski, C., Decq, A., Iglesias, A., Carton, A., Ball, S., Control of starch composition and structure through substrate supply in the monocellular alga Chlamydomonas reinhardtii (1996) J Biol Chem, 271, pp. 16281-16287 
504 |a Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A., Cohen, Z., Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid (2002) Phytochemistry, 60, pp. 497-503 
504 |a Liu, B., Benning, C., Lipid metabolism in microalgae distinguishes itself (2013) Curr Opin Biotechnol, 24, pp. 300-309 
504 |a Merchant, S.S., Kropat, J., Liu, B., Shaw, J., Warakanont, J., TAG, You're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation (2012) Curr Opin Biotechnol, 23, pp. 352-363 
504 |a Bell, R.M., Coleman, R.A., Enzymes of glycerolipid synthesis in eukaryotes (1980) Annu Rev Biochem, 49, pp. 459-487 
504 |a Yamashita, S., Hosaka, K., Taketo, M., Numa, S., Distribution of glycerolipid-synthesizing enzymes in the subfractions of rat liver microsomes (1973) FEBS Lett, 29, pp. 235-238 
504 |a Shockey, J.M., Gidda, S.K., Chapital, D.C., Kuan, J.-C., Dhanoa, P.K., Bland, J.M., Rothstein, S.J., Dyer, J.M., Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum (2006) Plant Cell, 18, pp. 2294-2313 
504 |a Cases, S., Smith, S.J., Zheng, Y.W., Myers, H.M., Lear, S.R., Sande, E., Novak, S., Lusis, A.J., Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis (1998) Proc Natl Acad Sci U S A, 95, pp. 13018-13023 
504 |a Cases, S., Stone, S.J., Zhou, P., Yen, E., Tow, B., Lardizabal, K.D., Voelker, T., Farese, R.V., Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members (2001) J Biol Chem, 276, pp. 38870-38876 
504 |a Rani, S.H., Krishna, T.H.A., Saha, S., Negi, A.S., Defective in Cuticular Ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase (2010) J Biol Chem, 285, pp. 38337-38347 
504 |a Rani, S.H., Saha, S., Rajasekharan, R., A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis (2013) Microbiology, 159 (1), pp. 155-166 
504 |a Durrett, T.P., McClosky, D.D., Tumaney, A.W., Elzinga, D.A., Ohlrogge, J., Pollard, M., A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds (2010) Proc Natl Acad Sci U S A, 107, pp. 9464-9469 
504 |a Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., Stymne, S., Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants (2000) Proc Natl Acad Sci U S A, 97, pp. 6487-6492 
504 |a Ståhl, U., Carlsson, A.S., Lenman, M., Dahlqvist, A., Huang, B., Bana, W., Bana, A., Stymne, S., Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis (2004) Plant Physiol, 135, pp. 1324-1335 
504 |a Cao, H., Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms (2011) BMC Res Notes, 4, p. 249 
504 |a Liu, Q., Siloto, R.M.P., Lehner, R., Stone, S.J., Weselake, R.J., Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology (2012) Prog Lipid Res, 51, pp. 350-377 
504 |a Turchetto-Zolet, A.C., Maraschin, F.S., Morais, G.L., Cagliari, A., Andrade, C.M., Margis-Pinheiro, M., Margis, R., Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis (2011) BMC Evol Biol, 11, pp. 263-277 
504 |a Wang, P., Wang, Z., Dou, Y., Zhang, X., Wang, M., Tian, X., Genome-wide identification and analysis of membrane-bound O-acyltransferase (MBOAT) gene family in plants (2013) Planta, 238, pp. 907-922 
504 |a Pan, X., Peng, F.Y., Weselake, R.J., Genome-wide analysis of Phospholipid: Diacylglycerol Acyltransferase (PDAT) genes in plants reveals the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs (2015) Plant Physiol, 167, pp. 887-904 
504 |a Chen, J.E., Smith, A.G., A look at diacylglycerol acyltransferases (DGATs) in algae (2012) J Biotechnol, 162, pp. 28-39 
504 |a Chen, C.-X., Sun, Z., Cao, H.-S., Fang, F.-L., Ouyang, L.-L., Zhou, Z.-G., Identification and characterization of three genes encoding acyl-CoA: diacylglycerol acyltransferase (DGAT) from the microalga Myrmecia incisa Reisigl (2015) Algal Res, 12, pp. 280-288 
504 |a Skewes-Cox, P., Sharpton, T.J., Pollard, K.S., DeRisi, J.L., Profile hidden Markov models for the detection of viruses within metagenomic sequence data (2014) PLoS One, 9 
504 |a Madera, M., Gough, J., A comparison of profile hidden Markov model procedures for remote homology detection (2002) Nucleic Acids Res, 30, pp. 4321-4328 
504 |a Alam, I., Dress, A., Rehmsmeier, M., Fuellen, G., Fitch, W.M., Comparative homology agreement search: an effective combination of homology-search methods (2004) Proc Natl Acad Sci U S A, 101, pp. 13814-13819 
504 |a Saha, S., Enugutti, B., Rajakumari, S., Rajasekharan, R., Cytosolic triacylglycerol biosynthetic pathway in oilseeds. molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase (2006) Plant Physiol, 141, pp. 1533-1543. , August 
504 |a Cao, H., Shockey, J.M., Klasson, K.T., Chapital, D.C., Mason, C.B., Scheffler, B.E., Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues (2013) PLoS One, 8 
504 |a Banaś, A., Carlsson, A.S., Huang, B., Lenman, M., Bana, W., Lee, M., Noiriel, A., Stymne, S., Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid:sterol acyltransferase) different from the yeast and mammalian Acyl-CoA:sterol acyltransferases (2005) J Biol Chem, 280 
504 |a Chen, G., Greer, M.S., Lager, I., Lindberg Yilmaz, J., Mietkiewska, E., Carlsson, A.S., Stymne, S., Weselake, R.J., Identification and characterization of an LCAT-like Arabidopsis thaliana gene encoding a novel phospholipase A (2012) FEBS Lett, 586, pp. 373-377 
504 |a Peelman, F., Vinaimont, N., Verhee, A., Vanloo, B., Verschelde, J.L., Labeur, C., Seguret-Mace, S., Vandekerckhove, J., A proposed architecture for lecithin cholesterol acyl transferase (LCAT): identification of the catalytic triad and molecular modeling (1998) Protein Sci, 7, pp. 587-599 
504 |a Peelman, F., Verschelde, J.L., Vanloo, B., Ampe, C., Labeur, C., Tavernier, J., Vandekerckhove, J., Rosseneu, M., Effects of natural mutations in lecithin:cholesterol acyltransferase on the enzyme structure and activity (1999) J Lipid Res, 40, pp. 59-69 
504 |a Chang, T.Y., Chang, C.C., Lin, S., Yu, C., Li, B.L., Miyazaki, A., Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and -2 (2001) Curr Opin Lipidol, 12, pp. 289-296 
504 |a Yang, H., Bard, M., Bruner, D.A., Gleeson, A., Deckelbaum, R.J., Aljinovic, G., Pohl, T.M., Sturley, S.L., Sterol esterification in yeast: a two-gene process (1996) Science, 272, pp. 1353-1356 
504 |a Hung, C.-H., Ho, M.-Y., Kanehara, K., Nakamura, Y., Functional study of diacylglycerol acyltransferase type 2 family in Chlamydomonas reinhardtii (2013) FEBS Lett, 587, pp. 2364-2370 
504 |a Deng, X.D., Gu, B., Li, Y.J., Hu, X.W., Guo, J.C., Fei, X.W., The roles of acyl-CoA: diacylglycerol acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii (2012) Mol Plant, 5, pp. 945-947 
504 |a Iwai, M., Ikeda, K., Shimojima, M., Ohta, H., Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter (2014) Plant Biotechnol J, 12, pp. 808-819 
504 |a Raux, E., Leech, H.K., Beck, R., Schubert, H.L., Santander, P.J., Roessner, C.A., Scott, A.I., Thermes, C., Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium (2003) Biochem J, 370 (2), pp. 505-516 
504 |a Machray, G.C., Burch, L., Hedley, P.E., Davies, H., Waugh, R., Characterisation of a complementary DNA encoding a novel plant enzyme with sucrolytic activity (1994) FEBS Lett, 354, pp. 123-127 
504 |a Appel, J., Schulz, R., Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I) (1996) Biochim Biophys Acta, 1298, pp. 141-147 
504 |a Takeuchi, K., Reue, K., Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis (2009) Am J Physiol Endocrinol Metab, 296, pp. E1195-E1209 
504 |a Fan, J., Andre, C., Xu, C., A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii (2011) FEBS Lett, 585, pp. 1985-1991 
504 |a Goodson, C., Roth, R., Wang, Z.T., Goodenough, U., Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost (2011) Eukaryot Cell, 10, pp. 1592-1606 
504 |a Goold, H.D., Cuiné, S., Legeret, B., Liang, Y., Brugière, S., Auroy, P., Javot, H., Beisson, F., Saturating light induces sustained accumulation of oil in plastidal lipid droplets in Chlamydomonas reinhardtii (2016) Plant Physiol, 171, pp. 2406-2417 
504 |a Kalscheuer, R., Steinbüchel, A., A novel bifunctional wax ester synthase/acyl-CoA:Diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1 (2003) J Biol Chem, 278, pp. 8075-8082 
504 |a Kalscheuer, R., Stoveken, T., Luftmann, H., Malkus, U., Reichelt, R., Steinbuchel, A., Neutral lipid biosynthesis in engineered Escherichia coli: Jojoba oil-like wax esters and fatty acid butyl esters (2006) Appl Environ Microbiol, 72, pp. 1373-1379 
504 |a Waltermann, M., Luftmann, H., Baumeister, D., Kalscheuer, R., Steinbuchel, A., Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids (2000) Microbiology, 146, pp. 1143-1149 
504 |a Newman, D.K., Kolter, R., A role for excreted quinones in extracellular electron transfer (2000) Nature, 405, pp. 94-97 
504 |a Alvarez, H.M., Steinbüchel, A., Triacylglycerols in prokaryotic microorganisms (2002) Appl Microbiol Biotechnol, 60, pp. 367-376 
504 |a Waltermann, M., Steinbuchel, A., Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots (2005) J Bacteriol, 187, pp. 3607-3619 
504 |a Karpowicz, S.J., Prochnik, S.E., Grossman, A.R., Merchant, S.S., The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage (2011) J Biol Chem, 286, pp. 21427-21439 
504 |a Yeh, A.P., Chatelet, C., Soltis, S.M., Kuhn, P., Meyer, J., Rees, D.C., Structure of a thioredoxin-like [2Fe-2S] Ferredoxin from Aquifex aeolicus (2000) J Mol Biol, 300, pp. 587-595 
504 |a Chatelet, C., Gaillard, J., Pétillot, Y., Louwagie, M., Meyer, J., A [2Fe-2S] protein from the hyperthermophilic bacterium Aquifex Aeolicus (1999) Biochem Biophys Res Commun, 261, pp. 885-889 
504 |a Zu, Y., Di Bernardo, S., Yagi, T., Hirst, J., Redox properties of the [2Fe-2S] center in the 24 kDa (NQO2) Subunit of NADH:ubiquinone oxidoreductase (Complex I) (2002) Biochemistry, 41, pp. 10056-10069 
504 |a Burgdorf, T., Linden, E., Bernhard, M., Yin, Q.Y., Back, J.W., Hartog, A.F., Muijsers, A.O., Friedrich, B., The soluble NAD + -Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH (2005) J Bacteriol, 187, pp. 3122-3132 
504 |a Goodenough, U., Blaby, I., Casero, D., Gallaher, S.D., Goodson, C., Johnson, S., Lee, J.-H., Roth, R., The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii (2014) Eukaryot Cell, 13, pp. 591-613 
504 |a Terashima, M., Specht, M., Hippler, M., The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features (2011) Curr Genet, 57, pp. 151-168 
504 |a Yoon, K., Han, D., Li, Y., Sommerfeld, M., Hu, Q., Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii (2012) Plant Cell, 24, pp. 3708-3724 
504 |a Davidi, L., Shimoni, E., Khozin-Goldberg, I., Zamir, A., Pick, U., Origin of beta-carotene-rich plastoglobuli in Dunaliella bardawil (2014) Plant Physiol, 164, pp. 2139-2156 
504 |a Sakaki, T., Kondo, N., Yamada, M., Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves (1990) Plant Physiol, 94, pp. 773-780 
504 |a Kaup, M.T., Froese, C.D., Thompson, J.E., A role for diacylglycerol acyltransferase during leaf senescence (2002) Plant Physiol, 129, pp. 1616-1626 
504 |a Martin, B.A., Wilson, R.F., Subcellular localization of triacylglycerol synthesis in spinach leaves (1984) Lipids, 19, pp. 117-121 
504 |a Li, X., Moellering, E.R., Liu, B., Johnny, C., Fedewa, M., Sears, B.B., Kuo, M.-H., Benning, C., A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii (2012) Plant Cell, 24, pp. 4670-4686 
504 |a UniProt: a hub for protein information (2014) Nucleic Acids Res, 43, pp. D204-D212. , Database issue 
504 |a Eddy, S.R., Profile hidden Markov models (1998) Bioinformatics, 14, pp. 755-763 
504 |a Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform (2002) Nucleic Acids Res, 30, pp. 3059-3066 
504 |a Larsson, A., AliView: A fast and lightweight alignment viewer and editor for large datasets (2014) Bioinformatics, 30, pp. 3276-3278 
504 |a Nicholas, K., Nicholas, H., Deerfield, D., GeneDoc: analysis and visualization of genetic variation (1997) EMBnet News, 4, p. 14 
504 |a Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W., CD-HIT: accelerated for clustering the next-generation sequencing data (2012) Bioinformatics, 28, pp. 3150-3152 
504 |a Criscuolo, A., Gribaldo, S., BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments (2010) BMC Evol Biol, 10, p. 210 
504 |a Crooks, G.E., Hon, G., Chandonia, J.-M., Brenner, S.E., WebLogo: a sequence logo generator (2004) Genome Res, 14, pp. 1188-1190 
504 |a Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. (2010) Syst Biol, 59, pp. 307-321 
504 |a Minh, B.Q., Nguyen, M.A.T., Haeseler, A., Ultrafast approximation for phylogenetic bootstrap (2013) Mol Biol Evol, 30, pp. 1188-1195 
504 |a Trifinopoulos, J., Nguyen, L.-T., Haeseler, A., Minh, B.Q., W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis (2016) Nucleic Acids Res, 44, pp. W232-W235 
504 |a Ronquist, F., Teslenko, M., Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Huelsenbeck, J.P., Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space (2012) Syst Biol, 61, pp. 539-542 
504 |a Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L., Swofford, D.L., AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics (2008) Bioinformatics, 24, pp. 581-583 
504 |a Huson, D.H., Scornavacca, C., Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks (2012) Syst Biol, 61, pp. 1061-1067 
504 |a Letunic, I., Bork, P., Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees (2016) Nucleic Acids Res, 44, pp. W242-W245 
504 |a Tardif, M., Atteia, A., Specht, M., Cogne, G., Rolland, N., Brugière, S., Hippler, M., Peltier, G., PredAlgo: a new subcellular localization prediction tool dedicated to green algae (2012) Mol Biol Evol, 29, pp. 3625-3639 
504 |a Gschloessl, B., Guermeur, Y., Cock, J.M., HECTAR: a method to predict subcellular targeting in heterokonts (2008) BMC Bioinformatics, 9, p. 393 
504 |a Jiroutová, K., Horák, A., Bowler, C., Oborník, M., Tryptophan biosynthesis in stramenopiles: eukaryotic winners in the diatom complex chloroplast (2007) J Mol Evol, 65, pp. 496-511 
504 |a Beligni, M.V., Bagnato, C., Prados, M.B., Bondino, H., Laxalt, A.M., Munnik, T., Have, A., The diversity of algal phospholipase D homologs revealed by biocomputational analysis (2015) J Phycol, 51, pp. 943-962 
504 |a Emanuelsson, O., Brunak, S., Heijne, G., Nielsen, H., Locating proteins in the cell using TargetP, SignalP and related tools (2007) Nat Protoc, 2, pp. 953-971 
504 |a Kelley, H., The Phyre2 web portal for protein modelling, prediction, and analysis (2015) Nat Protoc, 10, pp. 845-858 
504 |a Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER Suite: protein structure and function prediction (2015) Nat Methods, 12, pp. 7-8 
504 |a Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A., Protein identification and analysis tools on the ExPASy server (2005) The proteomics protocols handbook, pp. 571-607. , In: Walker JM, editor . Totowa: Humana Press Inc; 
504 |a Kyte, J., Doolittle, R.F., A simple method for displaying the hydropathic character of a protein (1982) J Mol Biol, 157, pp. 105-132 
504 |a Krogh, A., Larsson, B., Heijne, G., Sonnhammer, E.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes (2001) J Mol Biol, 305, pp. 567-580 
520 3 |a Background: Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. Results: Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. Conclusions: Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis. © 2017 The Author(s).  |l eng 
536 |a Detalles de la financiación: PICT-2013-2122, ANPCyT, Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: We thank Dr. Matías Mora for providing an evolutionary perspective to our DGAT3 results. We also thank Dr. Héctor Alvarez for critical input on our TLC analyses.This work was supported by funds to MVB from the Argentinean Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET-PIP 11420110100090) and from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT-2013-2122). MVB, CB, MBP, GRF, NS and SEM are CONICET Researchers. 
593 |a Instituto de Energía y Desarrollo Sustentable, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400S. C. de Bariloche, Río Negro, Argentina 
593 |a Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, La Plata, Argentina 
593 |a Universidad de Buenos Aires, CONICET Instituto de Investigaciones Cardiológicas (ININCA), Laboratorio de Glico-Inmuno-Biología, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina 
593 |a Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, Argentina 
690 1 0 |a ALGAE 
690 1 0 |a BIODIESEL PRODUCTION 
690 1 0 |a CHLOROPLAST 
690 1 0 |a HMMER PROFILING 
690 1 0 |a NEUTRAL LIPIDS 
690 1 0 |a PROTEIN PHYLOGENY 
690 1 0 |a SOLUBLE ACYLTRANSFERASE 
690 1 0 |a TRIGLYCERIDE METABOLISM 
700 1 |a Prados, M.B. 
700 1 |a Franchini, G.R. 
700 1 |a Scaglia, N. 
700 1 |a Miranda, S.E. 
700 1 |a Beligni, M.V. 
773 0 |d BioMed Central Ltd., 2017  |g v. 18  |k n. 1  |x 14712164  |w (AR-BaUEN)CENRE-4026  |t BMC Genomics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014803832&doi=10.1186%2fs12864-017-3602-0&partnerID=40&md5=29ecb38e9d2719cb54271bdbe5a615c3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1186/s12864-017-3602-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14712164_v18_n1_p_Bagnato  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14712164_v18_n1_p_Bagnato  |y Registro en la Biblioteca Digital 
961 |a paper_14712164_v18_n1_p_Bagnato  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76098