Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis

Immune checkpoints, a plethora of inhibitory pathways aimed at maintaining immune cell homeostasis, may be co-opted by cancer cells to evade immune destruction. Therapies targeting immune checkpoints have reached a momentum yielding significant clinical benefits in patients with various malignancies...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Méndez-Huergo, S.P
Otros Autores: Blidner, A.G, Rabinovich, G.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 25916caa a22017537a 4500
001 PAPER-15095
003 AR-BaUEN
005 20230607131903.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85009152051 
024 7 |2 cas  |a Galectins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a COPIE 
100 1 |a Méndez-Huergo, S.P. 
245 1 0 |a Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis 
260 |b Elsevier Ltd  |c 2017 
506 |2 openaire  |e Política editorial 
504 |a Topalian, S.L., Drake, C.G., Pardoll, D.M., Immune checkpoint blockade: a common denominator approach to cancer therapy (2015) Cancer Cell, 27, pp. 450-461 
504 |a Sharma, P., Allison, J.P., Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential (2015) Cell, 161, pp. 205-214 
504 |a Anderson, A.C., Joller, N., Kuchroo, V.K., Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation (2016) Immunity, 44, pp. 989-1004 
504 |a Thiemann, S., Baum, L.G., Galectins and immune responses-just how do they do those things they do? (2016) Annu Rev Immunol, 34, pp. 243-264 
504 |a Rabinovich, G.A., Conejo-Garcia, J.R., Shaping the immune landscape in cancer by galectin-driven regulatory pathways (2016) J Mol Biol, 428, pp. 3266-3281 
504 |a Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin–glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335 
504 |a Dimitroff, C.J., Galectin-binding O-glycosylations as regulators of malignancy (2015) Cancer Res, 75, pp. 3195-3202 
504 |a Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Dennis, J.W., Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation (2007) Cell, 129, pp. 123-134 
504 |a Kouo, T., Huang, L., Pucsek, A.B., Cao, M., Solt, S., Armstrong, T., Jaffee, E., Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells (2015) Cancer Immunol Res, 3, pp. 412-423. , This study reports the role of galectin-3 as a potent suppressor of CD8+ antitumor T cell responses via direct interaction with the checkpoint molecule LAG-3 
504 |a Stillman, B.N., Hsu, D.K., Pang, M., Brewer, C.F., Johnson, P., Liu, F.T., Baum, L.G., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) J Immunol, 176, pp. 778-789 
504 |a Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Bassil, R., Delacour, D., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37, pp. 249-263 
504 |a de la Fuente, H., Cruz-Adalia, A., Martinez Del Hoyo, G., Cibrian-Vera, D., Bonay, P., Perez-Hernandez, D., Vazquez, J., Ramirez-Huesca, M., The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1 (2014) Mol Cell Biol, 34, pp. 2479-2487 
504 |a Bonzi, J., Bornet, O., Betzi, S., Kasper, B.T., Mahal, L.K., Mancini, S.J., Schiff, C., Elantak, L., Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions (2015) Nat Commun, 6, p. 6194 
504 |a Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., Zheng, X.X., Kuchroo, V.K., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat Immunol, 6, pp. 1245-1252 
504 |a Wu, C., Thalhamer, T., Franca, R.F., Xiao, S., Wang, C., Hotta, C., Zhu, C., Kuchroo, V.K., Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells (2014) Immunity, 41, pp. 270-282. , The authors demonstrate the relevance of galectin-9 in the differentiation and stability of inducible regulatory T cells through mechanisms involving formation of CD44-TGF-βRI complexes 
504 |a Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Geffner, J.R., Rabinovich, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol, 10, pp. 981-991 
504 |a Poncini, C.V., Ilarregui, J.M., Batalla, E.I., Engels, S., Cerliani, J.P., Cucher, M.A., van Kooyk, Y., Rabinovich, G.A., Trypanosoma cruzi infection imparts a regulatory program in dendritic cells and T cells via galectin-1-dependent mechanisms (2015) J Immunol, 195, pp. 3311-3324 
504 |a Tesone, A.J., Rutkowski, M.R., Brencicova, E., Svoronos, N., Perales-Puchalt, A., Stephen, T.L., Allegrezza, M.J., Wickramasinghe, J., Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells (2016) Cell Rep, 14, pp. 1774-1786 
504 |a Garin, M.I., Chu, C.C., Golshayan, D., Cernuda-Morollon, E., Wait, R., Lechler, R.I., Galectin-1: a key effector of regulation mediated by CD4 + CD25+ T cells (2007) Blood, 109, pp. 2058-2065 
504 |a Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Rabinovich, G.A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251 
504 |a Juszczynski, P., Ouyang, J., Monti, S., Rodig, S.J., Takeyama, K., Abramson, J., Chen, W., Shipp, M.A., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc Natl Acad Sci U S A, 104, pp. 13134-13139 
504 |a Kuo, P.L., Huang, M.S., Cheng, D.E., Hung, J.Y., Yang, C.J., Chou, S.H., Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor (2012) J Biol Chem, 287, pp. 9753-9764 
504 |a Hsu, Y.L., Hung, J.Y., Chiang, S.Y., Jian, S.F., Wu, C.Y., Lin, Y.S., Tsai, Y.M., Kuo, P.L., Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis (2016) Oncotarget, 7, pp. 27584-27598 
504 |a Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Mendez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A., Ouyang, J., Glycosylation-dependent lectin–receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758. , This study defines a glycosylation-based mechanism mediated by galectin–receptor interactions that links tumor hypoxia to VEGFR2 signaling and preserves angiogenesis in settings of VEGF blockade 
504 |a Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Martinez-Allo, V.C., Dergan-Dylon, S., Mendez-Huergo, S.P., Stupirski, J.C., Toscano, M.A., Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease (2013) Cancer Res, 73, pp. 1107-1117 
504 |a Soldati, R., Berger, E., Zenclussen, A.C., Jorch, G., Lode, H.N., Salatino, M., Rabinovich, G.A., Fest, S., Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments (2012) Int J Cancer, 131, pp. 1131-1141 
504 |a Baker, G.J., Chockley, P., Zamler, D., Castro, M.G., Lowenstein, P.R., Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells (2016) Oncoimmunology, 5, p. e1163461 
504 |a Rutkowski, M.R., Stephen, T.L., Svoronos, N., Allegrezza, M.J., Tesone, A.J., Perales-Puchalt, A., Brencicova, E., Cadungog, M.G., Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation (2015) Cancer Cell, 27, pp. 27-40. , This study identifies a regulatory circuit mediated by IL-6 and galectin-1 that links commensal microbiota, TLR5-driven systemic inflammation, immunosuppression and distal tumor growth 
504 |a Cedeno-Laurent, F., Watanabe, R., Teague, J.E., Kupper, T.S., Clark, R.A., Dimitroff, C.J., Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma (2012) Blood, 119, pp. 3534-3538 
504 |a Martinez-Bosch, N., Fernandez-Barrena, M.G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Andre, S., Poirier, F., Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation (2014) Cancer Res, 74, pp. 3512-3524. , This study explores the relevance of galectin-1 in tumor–stromal interactions within the complex microenvironment of pancreatic ductal adenocarcinoma 
504 |a Demotte, N., Wieers, G., Van Der Smissen, P., Moser, M., Schmidt, C., Thielemans, K., Squifflet, J.L., Lurquin, C., A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice (2010) Cancer Res, 70, pp. 7476-7488 
504 |a Petit, A.E., Demotte, N., Scheid, B., Wildmann, C., Bigirimana, R., Gordon-Alonso, M., Carrasco, J., van der Bruggen, P., A major secretory defect of tumour-infiltrating T lymphocytes due to galectin impairing LFA-1-mediated synapse completion (2016) Nat Commun, 7, p. 12242. , The authors demonstrate a galectin-3-driven immune evasive mechanism leading to defects in cytokine secretion, lack of completion of secretory synapses and impaired adhesion of tumor-infiltrating lymphocytes to their targets 
504 |a Dardalhon, V., Anderson, A.C., Karman, J., Apetoh, L., Chandwaskar, R., Lee, D.H., Cornejo, M., Quintana, F.J., Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b + Ly-6G+ myeloid cells (2010) J Immunol, 185, pp. 1383-1392 
504 |a Thijssen, V.L., Barkan, B., Shoji, H., Aries, I.M., Mathieu, V., Deltour, L., Hackeng, T.M., Poirier, F., Tumor cells secrete galectin-1 to enhance endothelial cell activity (2010) Cancer Res, 70, pp. 6216-6224 
504 |a Markowska, A.I., Jefferies, K.C., Panjwani, N., Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells (2011) J Biol Chem, 286, pp. 29913-29921 
504 |a Laderach, D.J., Gentilini, L.D., Giribaldi, L., Delgado, V.C., Nugnes, L., Croci, D.O., Al Nakouzi, N., Mazza, O., A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease (2013) Cancer Res, 73, pp. 86-96 
504 |a Croci, D.O., Salatino, M., Rubinstein, N., Cerliani, J.P., Cavallin, L.E., Leung, H.J., Ouyang, J., Domaica, C.I., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma (2012) J Exp Med, 209, pp. 1985-2000 
504 |a Liu, S.D., Tomassian, T., Bruhn, K.W., Miller, J.F., Poirier, F., Miceli, M.C., Galectin-1 tunes TCR binding and signal transduction to regulate CD8 burst size (2009) J Immunol, 182, pp. 5283-5295 
504 |a Demetriou, M., Granovsky, M., Quaggin, S., Dennis, J.W., Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation (2001) Nature, 409, pp. 733-739 
504 |a Chen, I.J., Chen, H.L., Demetriou, M., Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling (2007) J Biol Chem, 282, pp. 35361-35372 
504 |a Demotte, N., Stroobant, V., Courtoy, P.J., Van Der Smissen, P., Colau, D., Luescher, I.F., Hivroz, C., Mourad, M., Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes (2008) Immunity, 28, pp. 414-424 
504 |a Chen, H.Y., Fermin, A., Vardhana, S., Weng, I.C., Lo, K.F., Chang, E.Y., Maverakis, E., Dustin, M.L., Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse (2009) Proc Natl Acad Sci U S A, 106, pp. 14496-14501 
504 |a Rangachari, M., Zhu, C., Sakuishi, K., Xiao, S., Karman, J., Chen, A., Angin, M., Sobel, R.A., Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion (2012) Nat Med, 18, pp. 1394-1400 
504 |a Matarrese, P., Tinari, A., Mormone, E., Bianco, G.A., Toscano, M.A., Ascione, B., Rabinovich, G.A., Malorni, W., Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission (2005) J Biol Chem, 280, pp. 6969-6985 
504 |a Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Baum, L.G., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat Immunol, 8, pp. 825-834 
504 |a Oomizu, S., Arikawa, T., Niki, T., Kadowaki, T., Ueno, M., Nishi, N., Yamauchi, A., Hirashima, M., Galectin-9 suppresses Th17 cell development in an IL-2-dependent but Tim-3-independent manner (2012) Clin Immunol, 143, pp. 51-58 
504 |a Kang, C.W., Dutta, A., Chang, L.Y., Mahalingam, J., Lin, Y.C., Chiang, J.M., Hsu, C.Y., Chu, Y.Y., Apoptosis of tumor infiltrating effector TIM-3 + CD8+ T cells in colon cancer (2015) Sci Rep, 5, p. 15659 
504 |a Su, E.W., Bi, S., Kane, L.P., Galectin-9 regulates T helper cell function independently of Tim-3 (2011) Glycobiology, 21, pp. 1258-1265 
504 |a Deak, M., Hornung, A., Novak, J., Demydenko, D., Szabo, E., Czibula, A., Fajka-Boja, R., Kovacs, L., Novel role for galectin-1 in T-cells under physiological and pathological conditions (2015) Immunobiology, 220, pp. 483-489 
504 |a Yang, R.Y., Hsu, D.K., Liu, F.T., Expression of galectin-3 modulates T-cell growth and apoptosis (1996) Proc Natl Acad Sci U S A, 93, pp. 6737-6742 
504 |a Kubach, J., Lutter, P., Bopp, T., Stoll, S., Becker, C., Huter, E., Richter, C., Knop, J., Human CD4 + CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function (2007) Blood, 110, pp. 1550-1558 
504 |a Toscano, M.A., Commodaro, A.G., Ilarregui, J.M., Bianco, G.A., Liberman, A., Serra, H.M., Hirabayashi, J., Rabinovich, G.A., Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses (2006) J Immunol, 176, pp. 6323-6332 
504 |a Blois, S.M., Ilarregui, J.M., Tometten, M., Garcia, M., Orsal, A.S., Cordo-Russo, R., Toscano, M.A., Handjiski, B., A pivotal role for galectin-1 in fetomaternal tolerance (2007) Nat Med, 13, pp. 1450-1457 
504 |a Cedeno-Laurent, F., Opperman, M., Barthel, S.R., Kuchroo, V.K., Dimitroff, C.J., Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression (2012) J Immunol, 188, pp. 3127-3137 
504 |a Sampson, J.F., Suryawanshi, A., Chen, W.S., Rabinovich, G.A., Panjwani, N., Galectin-8 promotes regulatory T-cell differentiation by modulating IL-2 and TGFbeta signaling (2016) Immunol Cell Biol, 94, pp. 213-219 
504 |a Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Shahin, A., Xu, D., Goodyear, C.S., Fukada, S.Y., Lukic, M.L., Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis (2009) J Immunol, 182, pp. 1167-1173 
504 |a Fermino, M.L., Dias, F.C., Lopes, C.D., Souza, M.A., Cruz, A.K., Liu, F.T., Chammas, R., Bernardes, E.S., Galectin-3 negatively regulates the frequency and function of CD4(+) CD25(+) Foxp3(+) regulatory T cells and influences the course of Leishmania major infection (2013) Eur J Immunol, 43, pp. 1806-1817 
504 |a Mari, E.R., Rasouli, J., Ciric, B., Moore, J.N., Conejo-Garcia, J.R., Rajasagi, N., Zhang, G.X., Rostami, A., Galectin-1 is essential for the induction of MOG35-55-based intravenous tolerance in experimental autoimmune encephalomyelitis (2016) Eur J Immunol, 46, pp. 1783-1796 
504 |a Thiemann, S., Man, J.H., Chang, M.H., Lee, B., Baum, L.G., Galectin-1 regulates tissue exit of specific dendritic cell populations (2015) J Biol Chem, 290, pp. 22662-22677. , The authors report a glycosylation-based mechanism by which galectin-1 selectively inhibits tissue emigration of immunogenic, but not tolerogenic, dendritic cells 
504 |a Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J.M., Toscano, M.A., Bianco, G.A., Isturiz, M.A., Rabinovich, G.A., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway (2007) J Immunol, 178, pp. 436-445 
504 |a Rostoker, R., Yaseen, H., Schif-Zuck, S., Lichtenstein, R.G., Rabinovich, G.A., Ariel, A., Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype (2013) Prostaglandins Other Lipid Mediat, 107, pp. 85-94 
504 |a Verschuere, T., Toelen, J., Maes, W., Poirier, F., Boon, L., Tousseyn, T., Mathivet, T., Kiss, R., Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity (2014) Int J Cancer, 134, pp. 873-884 
504 |a Partridge, E.A., Le Roy, C., Di Guglielmo, G.M., Pawling, J., Cheung, P., Granovsky, M., Nabi, I.R., Dennis, J.W., Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis (2004) Science, 306, pp. 120-124 
504 |a Tsuboi, S., Sutoh, M., Hatakeyama, S., Hiraoka, N., Habuchi, T., Horikawa, Y., Hashimoto, Y., Koie, T., A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans (2011) EMBO J, 30, pp. 3173-3185 
504 |a Wang, W., Guo, H., Geng, J., Zheng, X., Wei, H., Sun, R., Tian, Z., Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack (2014) J Biol Chem, 289, pp. 33311-33319 
504 |a Golden-Mason, L., McMahan, R.H., Strong, M., Reisdorph, R., Mahaffey, S., Palmer, B.E., Cheng, L., Niki, T., Galectin-9 functionally impairs natural killer cells in humans and mice (2013) J Virol, 87, pp. 4835-4845 
504 |a Motz, G.T., Coukos, G., The parallel lives of angiogenesis and immunosuppression: cancer and other tales (2011) Nat Rev Immunol, 11, pp. 702-711 
504 |a Corzo, C.A., Condamine, T., Lu, L., Cotter, M.J., Youn, J.I., Cheng, P., Cho, H.I., Padhya, T., HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment (2010) J Exp Med, 207, pp. 2439-2453 
504 |a Bax, M., Garcia-Vallejo, J.J., Jang-Lee, J., North, S.J., Gilmartin, T.J., Hernandez, G., Crocker, P.R., Haslam, S.M., Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins (2007) J Immunol, 179, pp. 8216-8224 
504 |a Markowska, A.I., Liu, F.T., Panjwani, N., Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response (2010) J Exp Med, 207, pp. 1981-1993 
504 |a Machado, C.M., Andrade, L.N., Teixeira, V.R., Costa, F.F., Melo, C.M., dos Santos, S.N., Nonogaki, S., Camargo, A.A., Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFbeta1-induced macrophages (2014) Cancer Med, 3, pp. 201-214 
504 |a Delgado, V.M., Nugnes, L.G., Colombo, L.L., Troncoso, M.F., Fernandez, M.M., Malchiodi, E.L., Frahm, I., Rabinovich, G.A., Modulation of endothelial cell migration and angiogenesis: a novel function for the tandem-repeat lectin galectin-8 (2011) FASEB J, 25, pp. 242-254 
504 |a Chen, W.S., Cao, Z., Sugaya, S., Lopez, M.J., Sendra, V.G., Laver, N., Leffler, H., Song, J., Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3 (2016) Nat Commun, 7, p. 11302. , The authors report a galectin-8-driven pathway that controls lymphangiogenesis and links VEGF-C, podoplanin and α1β1 and α5β1 integrins 
504 |a Heusschen, R., Schulkens, I.A., van Beijnum, J., Griffioen, A.W., Thijssen, V.L., Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis (2014) Biochim Biophys Acta, 1842, pp. 284-292 
504 |a Lykken, J.M., Horikawa, M., Minard-Colin, V., Kamata, M., Miyagaki, T., Poe, J.C., Tedder, T.F., Galectin-1 drives lymphoma CD20 immunotherapy resistance: validation of a preclinical system to identify resistance mechanisms (2016) Blood, 127, pp. 1886-1895. , This study highlights the role of galectin-1 as a mechanism of resistance to anti-CD20 (rituximab) immunotherapy via regulation of antibody-mediated lymphoma phagocytosis 
504 |a Luo, W., Song, L., Chen, X.L., Zeng, X.F., Wu, J.Z., Zhu, C.R., Huang, T., Yang, Q., Identification of galectin-1 as a novel mediator for chemoresistance in chronic myeloid leukemia cells (2016) Oncotarget, 7, pp. 26709-26723 
504 |a Kuo, P., Bratman, S.V., Shultz, D.B., von Eyben, R., Chan, C., Wang, Z., Say, C., Giaccia, A.J., Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response (2014) Clin Cancer Res, 20, pp. 5558-5569 
504 |a Yamamoto-Sugitani, M., Kuroda, J., Ashihara, E., Nagoshi, H., Kobayashi, T., Matsumoto, Y., Sasaki, N., Nakayama, R., Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia (2011) Proc Natl Acad Sci U S A, 108, pp. 17468-17473 
504 |a Harazono, Y., Kho, D.H., Balan, V., Nakajima, K., Hogan, V., Raz, A., Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and P-glycoprotein signaling (2015) Oncotarget, 6, pp. 19592-19604 
504 |a Cagnoni, A.J., Perez Saez, J.M., Rabinovich, G.A., Marino, K.V., Turning-off signaling by siglecs selectins, and galectins: chemical inhibition of glycan-dependent interactions in cancer (2016) Front Oncol, 6, p. 109 
520 3 |a Immune checkpoints, a plethora of inhibitory pathways aimed at maintaining immune cell homeostasis, may be co-opted by cancer cells to evade immune destruction. Therapies targeting immune checkpoints have reached a momentum yielding significant clinical benefits in patients with various malignancies by unleashing anti-tumor immunity. Galectins, a family of glycan-binding proteins, have emerged as novel regulatory checkpoints that promote immune evasive programs by inducing T-cell exhaustion, limiting T-cell survival, favoring expansion of regulatory T cells, de-activating natural killer cells and polarizing myeloid cells toward an immunosuppressive phenotype. Concomitantly, galectins can trigger vascular signaling programs, serving as bifunctional messengers that couple tumor immunity and angiogenesis. Thus, targeting galectin–glycan interactions may halt tumor progression by simultaneously augmenting antitumor immunity and suppressing aberrant angiogenesis. © 2017 Elsevier Ltd  |l eng 
593 |a Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428, Argentina 
690 1 0 |a GALECTIN 
690 1 0 |a GLYCAN 
690 1 0 |a GALECTIN 
690 1 0 |a BONE MARROW CELL 
690 1 0 |a CARCINOGENESIS 
690 1 0 |a CD4+ T LYMPHOCYTE 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a GENE EXPRESSION PROFILING 
690 1 0 |a GLIOBLASTOMA 
690 1 0 |a GLYCOSYLATION 
690 1 0 |a HUMAN 
690 1 0 |a IMMUNOMODULATION 
690 1 0 |a IMMUNOREGULATION 
690 1 0 |a INTERNALIZATION 
690 1 0 |a KAPOSI SARCOMA 
690 1 0 |a NATURAL KILLER CELL 
690 1 0 |a OLIGOMERIZATION 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a PROTEIN PROTEIN INTERACTION 
690 1 0 |a REGULATORY T LYMPHOCYTE 
690 1 0 |a REVIEW 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a T LYMPHOCYTE 
690 1 0 |a TUMOR ASSOCIATED LEUKOCYTE 
690 1 0 |a TUMOR IMMUNITY 
690 1 0 |a ANIMAL 
690 1 0 |a IMMUNOLOGY 
690 1 0 |a NEOPLASM 
690 1 0 |a NEOVASCULARIZATION (PATHOLOGY) 
690 1 0 |a PATHOLOGY 
690 1 0 |a VASCULARIZATION 
690 1 0 |a ANIMALS 
690 1 0 |a GALECTINS 
690 1 0 |a HUMANS 
690 1 0 |a KILLER CELLS, NATURAL 
690 1 0 |a NEOPLASMS 
690 1 0 |a NEOVASCULARIZATION, PATHOLOGIC 
690 1 0 |a T-LYMPHOCYTES 
700 1 |a Blidner, A.G. 
700 1 |a Rabinovich, G.A. 
773 0 |d Elsevier Ltd, 2017  |g v. 45  |h pp. 8-15  |p Curr. Opin. Immunol.  |x 09527915  |w (AR-BaUEN)CENRE-4371  |t Current Opinion in Immunology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009152051&doi=10.1016%2fj.coi.2016.12.003&partnerID=40&md5=376a641f46970f71a006d500ce54d71d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.coi.2016.12.003  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09527915_v45_n_p8_MendezHuergo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09527915_v45_n_p8_MendezHuergo  |y Registro en la Biblioteca Digital 
961 |a paper_09527915_v45_n_p8_MendezHuergo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76048