Starting points in plant-bacteria nitrogen-fxing symbioses: Intercellular invasion of the roots

Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fxation in farming systems is benefcial to agriculture and environmental preservation. In this conte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ibáñez, F.
Otros Autores: Wall, L., Fabra, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Oxford University Press 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 25166caa a22015857a 4500
001 PAPER-15090
003 AR-BaUEN
005 20230607131903.0
008 170725s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85020256034 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JEBOA 
100 1 |a Ibáñez, F. 
245 1 0 |a Starting points in plant-bacteria nitrogen-fxing symbioses: Intercellular invasion of the roots 
260 |b Oxford University Press  |c 2017 
270 1 0 |m Fabra, A.; Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río CuartoArgentina; email: afabra@exa.unrc.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Allen, O.N., Allen, E.K., (1981) The Leguminosae: A Source Book of Characteristics, Uses and Nodulation, , University of Wisconsin Press: Madison, WI/Macmillan Publishing, London 
504 |a Beauchemin, N.J., Furnholm, T., Lavenus, J., Svistoonoff, S., Doumas, P., Bogusz, D., Laplaze, L., Tisa, L.S., Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. Strain CcI3 (2012) Applied and Environmental Microbiology, 78, pp. 575-580 
504 |a Bender, G.L., Nayudu, M., Goydych, W., Rolfe, B.G., Early infection events in the nodulation of the non-legume Parasponia andersonii by Bradyrhizobium (1987) Plant Science, 51, pp. 285-293 
504 |a Berg, R.H., Frankia forms infection threads (1999) Canadian Journal of Botany, 77, pp. 1327-1333 
504 |a Berg, R.H., Cytoplasmic bridge formation in the nodule apex of actinorhizal root nodules (1999) Canadian Journal of Botany, 77, pp. 1351-1357 
504 |a Bhuvaneswari, T.V., Turgeon, B.G., Bauer, W.D., Early events in the infection of soybean (Glycine max [L.] Merr.) by Rhizobium japonicum. I. Localization of infectible root cells (1980) Plant Physiology, 66, pp. 1027-1031 
504 |a Bonaldi, K., Gourion, B., Fardoux, J., Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. Strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica (2010) Molecular Plant-Microbe Interactions, 23, pp. 760-770 
504 |a Bonaldi, K., Gargani, D., Prin, Y., Fardoux, J., Gully, D., Nouwen, N., Goormachtig, S., Giraud, E., Nodulation of Aeschynomene afraspera and A. Indica by photosynthetic Bradyrhizobium Sp. Strain ORS285: The nod-dependent versus the nod-independent symbiotic interaction (2011) Molecular Plant-Microbe Interactions, 11, pp. 1359-1371 
504 |a Boogerd, F.C., Van Rossum, D., Nodulation of groundnut by Bradyrhizobium: A simple infection process by crack entry (1997) FEMS Microbiology Reviews, 21, pp. 5-27 
504 |a Bryan, J.A., Berlyn, G.P., Gordon, J.C., Towards a new concept of the evolution of symbiotic nitrogen fxation in the Leguminosae (1995) Plant and Soil, 186, pp. 151-159 
504 |a Cannon, S.B., McKain, M.R., Harkess, A., Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes (2015) Molecular Biology and Evolution, 32, pp. 193-210 
504 |a Capoen, W., Den Herder, J., Sun, J., Verplancke, C., De Keyser, A., De Rycke, R., Goormachtig, S., Holsters, M., Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata (2009) Plant Cell, 21, pp. 1526-1540 
504 |a Capoen, W., Oldroyd, G., Goormachtig, S., Sesbania rostrata: A case study of natural variation in legume nodulation (2010) New Phytologist, 186, pp. 340-345 
504 |a Cérémonie, H., Debellé, F., Fernandez, M.P., Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor (1999) Canadian Journal of Botany, 77, pp. 1293-1301 
504 |a Chandler, M.R., Some observations on infection of Arachis hypogaea L. By rhizobium (1978) Journal of Experimental Botany, 29, pp. 749-755 
504 |a Chandler, M.R., Date, R.A., Roughley, R.J., Infection and root-nodule development in Stylosanthes species by rhizobium (1982) Journal of Experimental Botany, 33, pp. 47-57 
504 |a Charpentier, M., Oldroyd, G., How close are we to nitrogen-fxing cereals? (2010) Current Opinion in Plant Biology, 31, pp. 556-564 
504 |a Chen, C., Zhu, H., Are common symbiosis genes required for endophytic rice-rhizobial interactions? (2013) Plant Signaling and Behaviour, 89, p. e25453 
504 |a Chi, F., Shen, S.H., Cheng, H.P., Jing, Y.X., Yanni, Y.G., Dazzo, F.B., Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefts to rice growth physiology (2005) Applied and Environmental Microbiology, 71, pp. 7271-7278 
504 |a Clavijo, F., Diedhiou, I., Vaissayre, V., The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals (2015) New Phytologist, 208, pp. 887-903 
504 |a De Faria, S., Hay, G., Sprent, J., Entry of rhizobia into roots of Mimosa scabrella Bentham occurs between epidermal cells (1988) Journal of General Microbiology, 134, pp. 2291-2296 
504 |a Delaux, P.M., Radhakrishnan, G., Oldroyd, G., Tracing the evolutionary path to nitrogen-fxing crops (2015) Current Opinion in Plant Biology, 26, pp. 95-99 
504 |a Delaux, P.M., Radhakrishnan, G.V., Jayaraman, D., Algal ancestor of land plants was preadapted for symbiosis (2015) Proceedings of the National Academy of Sciences, USA, 112, pp. 13390-13395 
504 |a D'Haeze, W., Gao, M., De Rycke, R., Van Montagu, M., Engler, G., Holsters, M., Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively (1998) Molecular Plant-Microbe Interactions, 11, pp. 999-1008 
504 |a D'Haeze, W., Mergaert, P., Promé, J.C., Holsters, M., Nod factor requirements for effcient stem and root nodulation of the tropical legume Sesbania rostrata (2000) Journal of Biological Chemistry, 275, pp. 15676-15684 
504 |a D'Haeze, W., De Rycke, R., Mathis, R., Goormachtig, S., Pagnotta, S., Verplancke, C., Capoen, W., Holsters, M., Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume (2003) Proceedings of the National Academy of Sciences USA, 100, pp. 11789-11794 
504 |a Doyle, J., Phylogenetic perspectives on the origins of nodulation (2011) Molecular Plant-Microbe Interactions, 24, pp. 1289-1295 
504 |a Frugier, F., Kosuta, S., Murray, J.D., Crespi, M., Szczyglowski, K., Cytokinin: Secret agent of symbiosis (2008) Trends in Plant Science, 13, pp. 115-120 
504 |a Gabbarini, L., Wall, L., Analysis of nodulation kinetics in Frankia-Discaria trinervis symbiosis reveals different factors involved in the nodulation process (2008) Physiologia Plantarum, 133, pp. 776-785 
504 |a Gage, D.J., Infection and invasion of roots by symbiotic, nitrogen-fxing rhizobia during nodulation of temperate legumes (2004) Microbiology and Molecular Biology Reviews, 68, pp. 280-300 
504 |a Gherbi, H., Markmann, K., Svistoonoff, S., Estevan, J., Autran, D., Giczey, G., SymRK defnes a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria (2008) Proceedings of the National Academy of Sciences, USA, 105, pp. 4928-4932 
504 |a Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J.C., Legumes symbioses: Absence of Nod genes in photosynthetic bradyrhizobia (2007) Science, 316, pp. 1307-1312 
504 |a González-Sama, A., Lucas, M.M., De Felipe, M.R., Pueyo, J.J., An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus) (2004) New Phytologist, 163, pp. 371-380 
504 |a Goormachtig, S., Capoen, W., Holsters, M., Rhizobium infection: Lessons from the versatile nodulation behaviour of water-tolerant legumes (2004) Trends in Plant Science, 9, pp. 518-522 
504 |a Goormachtig, S., Capoen, W., James, E.K., Holsters, M., Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation (2004) Proceedings of the National Academy of Sciences, USA, 101, pp. 6303-6308 
504 |a Granqvist, E., Sun, J., Op Den Camp, R., Pujic, P., Hill, L., Normand, P., Bacterial-induced calcium oscillations are common to nitrogen-fxing associations of nodulating legumes and nonlegumes (2015) New Phytologist, 207, pp. 551-558 
504 |a Guha, S., Sarkar, M., Ganguly, P., Uddin, M.R., Mandal, S., DasGupta, M., Segregation of nod-containing and nod-defcient bradyrhizobia as endosymbionts of Arachis hypogaea and as endophytes of Oryza sativa in intercropped felds of Bengal Basin, India (2016) Environmental Microbiology, 18, pp. 2575-2590 
504 |a Hayashi, T., Shimoda, Y., Sato, S., Tabata, S., Imaizumi-Anraku, H., Hayashi, M., Rhizobial infection does not require cortical expression of upstream common symbiosis genes responsible for the induction of Ca2+ spiking (2014) Plant Journal, 77, pp. 146-159 
504 |a Hirsch, A.M., Developmental biology of legume nodulation (1992) New Phytologist, 122, pp. 211-237 
504 |a Hirsch, A.M., Yu, N., Ma, N., Schwartz, A.R., De Hoff, P.L., The Chamaecrista fasciculata nitrogen-fxing symbiosis (2009) Botany and Mycology 2009 Abstract 446, , http://www.2009.botanyconference.org/engine/search/index.php?func=detail&aid=446, (September 30, 2009) 
504 |a Ibáñez, F., Angelini, J., Figueredo, M.S., Muñoz, V., Tonelli, M.L., Fabra, A., Sequence and expression analysis of putative Arachis hypogaea (peanut) Nod factor perception proteins (2015) Journal of Plant Research, 128, pp. 709-718 
504 |a Ibáñez, F., Fabra, A., Rhizobial Nod factors are required for cortical cell division in the nodule morphogenetic programme of the Aeschynomeneae legume Arachis (2011) Plant Biology, 13, pp. 794-800 
504 |a Imanishi, L., (2015) Bases Comunes de la Simbiosis Actinorrícica: Análisis Comparativo Entre Discaria Trinervis y Casuarina Glauca, , PhD thesis, Universidad Nacional de Quilmes 
504 |a James, E., Sprent, J., Development of N2-fxing nodules on the wetland legume Lotus uliginosus exposed to conditions of fooding (1999) New Phytologist, 142, pp. 219-231 
504 |a James, E.K., Sprent, J.I., Sutherland, J.M., McInroy, S.G., Minchin, F.R., The structure of nitrogen fxing root nodules on the aquatic Mimosoid legume Neptunia plena (1992) Annals of Botany, 69, pp. 173-180 
504 |a Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., Shibuya, N., Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor (2006) Proceedings of the National Academy of Sciences, USA, 103, pp. 11086-11091 
504 |a Karas, B., Murray, J., Gorzelak, M., Smith, A., Sato, S., Tabata, S., Szczyglowski, K., Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti involves the nodulation factor-dependent induction of root hairs (2005) Plant Physiology, 137, pp. 1331-1344 
504 |a Kawaharada, Y., Kelly, S., Nielsen, M.W., Hjuler, C.T., Gysel, K., Muszynski, A., Receptor-mediated exopolysaccharide perception controls bacterial infection (2015) Nature, 523, pp. 308-312 
504 |a Liang, Y., Cao, Y., Tanaka, K., Thibivilliers, S., Wan, J., Choi, J., Kang, C.H., Stacey, G., Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response (2013) Science, 341, pp. 1384-1387 
504 |a Lievens, S., Goormachtig, S., Den Herder, J., Capoen, W., Mathis, R., Hedden, P., Holsters, M., Gibberellins are involved in nodulation of Sesbania rostrata (2005) Plant Physiology, 139, pp. 1366-1379 
504 |a Liu, Q., Berry, A.M., The infection process and nodule initiation in the Frankia-Ceanothus root nodule symbiosis (1991) Protoplasma, 163, pp. 82-92 
504 |a Madsen, L.H., Tirichine, L., Jurkiewicz, A., Sullivan, J.T., Heckmann, A.B., Bek, A.S., The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus (2010) Nature Communications, 1, pp. 1-12 
504 |a Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza (2011) Nature, 469, pp. 58-63 
504 |a Markmann, K., Parniske, M., (2009) Evolution of Root Endosymbiosis with Bacteria: How Novel Are Nodules? Trends in Plant Science, 14, pp. 77-86 
504 |a Marvel, D.J., Torrey, J.G., Ausubel, F.M., Rhizobium symbiotic genes required for nodulation of legume and nonlegume hosts (1987) Proceedings of the National Academy of Sciences, USA, 84, pp. 1319-1323 
504 |a Mathesius, U., Weinman, J.J., Rolfe, B.G., Djordjevic, M.A., Rhizobia can induce nodules in white clover by 'hijacking' mature cortical cells activated during lateral root development (2000) Molecular Plant-Microbe Interactions, 13, pp. 170-182 
504 |a Mithöfer, A., Suppression of plant defense in rhizobia-legume symbiosis (2002) Trends in Plant Science, 7, pp. 440-444 
504 |a Morgante, C., Castro, S., Fabra, A., Role of rhizobial EPS in the evasion of peanut defense response during the crack-entry infection process (2007) Soil Biology and Biochemistry, 39, pp. 1222-1225 
504 |a Naisbitt, T., James, E.K., Sprent, J.I., The evolutionary signifcance of the legume genus Chamaecrista, as determined by nodule structure (1992) New Phytologist, 122, pp. 487-492 
504 |a Okazaki, S., Kaneko, T., Sato, S., Saeki, K., Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system (2013) Proceedings of the National Academy of Sciences, USA, 110, pp. 17131-21736 
504 |a Okazaki, S., Tittabutr, P., Teulet, A., Rhizobium-legume symbiosis in the absence of Nod factors: Two possible scenarios with or without the T3SS (2015) The ISME Journal, 1-11 
504 |a Oldroyd, G., Dissecting symbiosis: Developments in Nod factor signal transduction (2001) Annals of Botany, 87, pp. 709-718 
504 |a Oldroyd, G., Speak, friend, and enter: Signaling systems that promote benefcial symbiotic associations in plants (2013) Nature Reviews Microbiology, 11, pp. 252-263 
504 |a Op Den Camp, R., Streng, A., De Mita, S., Cao, Q., Polone, E., Liu, W., LysM-type mycorrhizal receptor recruited for Rhizobium symbiosis in nonlegume Parasponia (2011) Science, 331, pp. 909-912 
504 |a Parniske, M., Arbuscular mycorrhiza: The mother of plant root endosymbioses (2008) Nature Reviews Microbiology, 6, pp. 763-775 
504 |a Pawlowski, K., Demchenko, K.N., The diversity of actinorhizal symbiosis (2012) Protoplasma, 249, pp. 967-979 
504 |a Perrine-Walker, F.M., Prayitno, J., Rolfe, B.G., Weinman, J.J., Hocart, C.H., Infection process and the interaction of rice roots with rhizobia (2007) Journal of Experimental Botany, 58, pp. 3343-3350 
504 |a Podlešáková, K., Fardoux, J., Patrel, D., Bonaldi, K., Novák, O., Strnad, M., Giraud, E., Nouwen, N., Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes (2013) Molecular Plant-Microbe Interactions, 26, pp. 1232-1238 
504 |a Ranga Rao, V., Effect of root temperature on the infection processes and nodulation in Lotus and Stylosanthes (1977) Journal of Experimental Botany, 28, pp. 241-259 
504 |a Renier, A., Maillet, F., Fardoux, J., Poinsot, V., Giraud, E., Nouwen, N., Photosynthetic Bradyrhizobium sp. Strain ORS285 synthesizes 2-O-methylfucosylated lipochitooligosaccharides for nod gene-dependent interaction with Aeschynomene plants (2011) Molecular Plant-Microbe Interactions, 24, pp. 1440-1447 
504 |a Rogers, C., Oldroyd, G.E., Synthetic biology approaches to engineering the nitrogen symbiosis in cereals (2014) Journal of Experimental Botany, 65, pp. 1939-1946 
504 |a Rolfe, B.G., Gresshoff, P.M., Genetic analysis of legume nodule initiation (1988) Annual Review of Plant Physiology and Plant Molecular Biology, 39, pp. 297-319 
504 |a Saha, S., Paul, A., Herring, L., Dutta, A., Bhattacharya, A., Samaddar, S., Goshe, M.B., DasGupta, M., Gatekeeper tyrosine phosphorylation of SYMRK is essential for synchronizing the epidermal and cortical responses in root nodule symbiosis (2016) Plant Physiology, 171, pp. 71-81 
504 |a Sinharoy, S., DasGupta, M., RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the Aeschynomeneae legume Arachis (2009) Molecular Plant-Microbe Interactions, 22, pp. 1466-1475 
504 |a Soltis, D.E., Soltis, P.S., Morgan, D.R., Swensen, S.M., Mullin, B.C., Dowd, J.M., Martin, P.G., Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fxation in angiosperms (1995) Proceedings of the National Academy of Sciences, USA, 92, pp. 2647-9651 
504 |a Soyano, T., Hayashi, M., Transcriptional networks leading to symbiotic nodule organogenesis (2014) Current Opinion in Plant Biology, 20, pp. 146-154 
504 |a Sprent, J.I., Which steps are essential for the formation of functional legume nodules? (1989) New Phytologist, 111, pp. 129-153 
504 |a Sprent, J.I., James, E., Legume evolution: Where do nodules and mycorrhizas ft in? (2007) Plant Physiology, 144, pp. 575-581 
504 |a Sprent, J.I., Evolving ideas of legume evolution and diversity: A taxonomic perspective on the occurrence of nodulation (2007) New Phytologist, 174, pp. 11-25 
504 |a Sprent, J.I., 60Ma of legume nodulation. What's new? What's changing? (2008) Journal of Experimental Botany, 59, pp. 1081-1084 
504 |a Subba-Rao, N.S., Mateos, P.F., Baker, D., Stuart Pankratz, H., Palma, J., Dazzo, F., Sprent, J.I., The unique root-nodule symbiosis between Rhizobium and the aquatic legume, Neptunia natans (L.f.) Druce (1995) Planta, 196, pp. 311-320 
504 |a Svistoonoff, S., Benabdoun, F.M., Nambiar-Veetil, M., Imanishi, L., Vaissayre, V., Cesari, S., The independent acquisition of plant root nitrogen-fxing symbiosis in fabids recruited the same genetic pathway for nodule organogenesis (2013) PLoS One, 8, p. e64515 
504 |a Svistoonoff, S., Laplaze, L., Auguy, F., Runions, J., Duponnois, R., Haseloff, J., Franche, C., Bogusz, D., Cg12 expression is specifcally linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development (2003) Molecular Plant-Microbe Interactions, 16, pp. 600-607 
504 |a Svistoonoff, S., Valerie, H., Gherbi, H., Actinorhizal root nodule symbioses: What is signaling telling on the origins of nodulation? (2014) Current Opinion in Plant Biology, 20, pp. 11-18 
504 |a Trinick, M.J., Symbiosis between Rhizobium and the non-legume, Trema aspera (1973) Nature, 244, pp. 459-460 
504 |a Trinick, M.J., Galbraith, J., The Rhizobium requirements of the non-legume Parasponia in relationship to the cross-inoculation group concept of legumes (1980) New Phytologist, 86, pp. 17-26 
504 |a Uheda, E., Daimon, H., Yoshizako, F., Colonization and invasion of peanut (Arachis hypogaea L.) roots by gusA-marked Bradyrhizobium sp (2001) Canadian Journal of Botany, 79, pp. 733-738 
504 |a Valverde, C., Wall, L.G., Time course of nodule development in Discaria trinervis (Rhamnaceae)-Frankia symbiosis (1999) New Phytologist, 141, pp. 345-354 
504 |a Valverde, C., Wall, L.G., The regulation of nodulation in Discaria trinervis (Rhamnaceae)Frankia symbiosis (1999) Canadian Journal of Botany, 77, pp. 1302-1310 
504 |a Van Brussel, A.A., Bakhuizen, R., Van Spronsen, P.C., Spaink, H.P., Tak, T., Lugtenberg, B.J., Kijne, J.W., Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium (1992) Science, 257, pp. 70-72 
504 |a Vega-Hernández, M.C., Pérez-Galdona, R., Dazzo, F.B., Jarabo-Lorenzo, A., Alfayate, M.C., León-Barrios, M., Novel infection process in the indeterminate root nodule symbiosis between Chamaecytisus proliferus (tagasaste) and Bradyrhizobium sp (2001) New Phytologist, 150, pp. 707-721 
504 |a Vernié, T., Kim, J., Frances, L., The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root (2015) The Plant Cell, 27, pp. 3410-3424 
504 |a Wall, L.G., The actinorhizal symbiosis (2000) Journal of Plant Growth Regulation, 19, pp. 167-182 
504 |a Wall, L.G., Berry, A.M., Early interactions, infection and nodulation in actinorhizal symbiosis (2008) Nitrogen Fxation: Origins, Applications, and Research Progress, Vol. 6 Nitrogen-Fixing Actinorhizal Symbioses, pp. 147-166. , Pawlowski, K., Newton, W.E., eds. Springer 
504 |a Wall, L.G., Huss-Danell, K., Regulation of nodulation in Alnus incana-Frankia symbiosis (1997) Physiologia Plantarum, 99, pp. 594-600 
504 |a Wan, J., Zhang, X.C., Neece, D., Ramonell, K.M., Clough, S., Kim, S.Y., Stacey, M.G., Stacey, G., A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis (2008) Plant Cell, 20, pp. 471-481 
504 |a Wang, C., Zhu, M., Duan, L., Yu, H., Chang, X., Heng Kang, L., Lotus japonicus clathrin heavy chain 1 is associated with Rho-like GTPase ROP6 and involved in nodule formation (2015) Plant Physiology, 167, pp. 1497-1510 
504 |a Werner, G.D., Cornwell, W.K., Sprent, J.I., Kattge, J., Kiers, E.T., A single evolutionary innovation drives the deep evolution of symbiotic N2-fxation in angiosperms (2014) Nature Communications, 5, p. 4087 
504 |a Xie, F., Murray, J.D., Kim, J., Heckmann, A., Edwards, A., Oldroyd, G.E., Downie, J.A., Legume pectate lyase required for root infection by rhizobia (2012) Proceedings of the National Academy of Sciences, USA, 109, pp. 633-638 
520 3 |a Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fxation in farming systems is benefcial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fxing systems and nitrogen-fxing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fxing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed. © 2016 The Author.  |l eng 
593 |a Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina 
593 |a Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina 
690 1 0 |a ACTINORHIZAL PLANTS 
690 1 0 |a INTERCELLULAR INVASION 
690 1 0 |a LEGUMES 
690 1 0 |a MOLECULAR SIGNALING 
690 1 0 |a RHIZOBIA 
690 1 0 |a SYMBIOSES 
700 1 |a Wall, L. 
700 1 |a Fabra, A. 
773 0 |d Oxford University Press, 2017  |g v. 68  |h pp. 1905-1918  |k n. 8  |x 00220957  |w (AR-BaUEN)CENRE-184  |t J. Exp. Bot. 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020256034&doi=10.1093%2fjxb%2ferw387&partnerID=40&md5=1534412f70400615ce7dca42fac0f89d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1093/jxb/erw387  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00220957_v68_n8_p1905_Ibanez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220957_v68_n8_p1905_Ibanez  |y Registro en la Biblioteca Digital 
961 |a paper_00220957_v68_n8_p1905_Ibanez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76043