Evolved distal tail carbohydrate binding modules of Lactobacillus phage J-1: a novel type of anti-receptor widespread among lactic acid bacteria phages

Bacteriophage replication requires specific host-recognition. Some siphophages harbour a large complex, the baseplate, at the tip of their non-contractile tail. This baseplate holds receptor binding proteins (RBPs) that can recognize the host cell-wall polysaccharide (CWPS) and specifically attach t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dieterle, M.-E
Otros Autores: Spinelli, S., Sadovskaya, I., Piuri, M., Cambillau, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14975caa a22014657a 4500
001 PAPER-15032
003 AR-BaUEN
005 20230518204539.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85014635701 
024 7 |2 cas  |a lactic acid, 113-21-3, 50-21-5; Carbohydrates; Lactic Acid; Viral Tail Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MOMIE 
100 1 |a Dieterle, M.-E. 
245 1 0 |a Evolved distal tail carbohydrate binding modules of Lactobacillus phage J-1: a novel type of anti-receptor widespread among lactic acid bacteria phages 
260 |b Blackwell Publishing Ltd  |c 2017 
270 1 0 |m Piuri, M.; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICETArgentina; email: marianapiuri@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., PHENIX: a comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 213-221 
504 |a Ainsworth, S., Sadovskaya, I., Vinogradov, E., Courtin, P., Guerardel, Y., Mahony, J., Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity (2014) MBio, 5, pp. e00814-e00880. , e 
504 |a Aslanidis, C., de Jong, P.J., Ligation-independent cloning of PCR products (LIC-PCR) (1990) Nucleic Acids Res, 18, pp. 6069-6074 
504 |a Bebeacua, C., Bron, P., Lai, L., Vegge, C.S., Brondsted, L., Spinelli, S., Structure and molecular assignment of lactococcal phage TP901-1 baseplate (2010) J Biol Chem, 285, pp. 39079-39086 
504 |a Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S.M., Bricogne, G., Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2210-2221 
504 |a Capra, M.L., Quiberoni, A., Reinheimer, J., Phages of Lactobacillus casei/paracasei: response to environmental factors and interaction with collection and commercial strains (2006) J Appl Microbiol, 100, pp. 334-342 
504 |a De la Rosa-Trevin, J.M., Oton, J., Marabini, R., Zaldivar, A., Vargas, J., Carazo, J.M., Sorzano, C.O., Xmipp 3.0: an improved software suite for image processing in electron microscopy (2013) J Struct Biol, 184, pp. 321-328 
504 |a Desmyter, A., Farenc, C., Mahony, J., Spinelli, S., Bebeacua, C., Blangy, S., Viral infection modulation and neutralization by camelid nanobodies (2013) Proc Natl Acad Sci U S A, 110, pp. E1371-E1379 
504 |a Dieterle, M.E., Bowman, C., Batthyany, C., Lanzarotti, E., Turjanski, A., Hatfull, G., Piuri, M., Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis (2014) Appl Environ Microbiol, 80, pp. 7107-7121 
504 |a Dieterle, M.E., Jacobs-Sera, D., Russell, D., Hatfull, G., Piuri, M., Complete genome sequences of Lactobacillus Phages J-1 and PL-1 (2014) Genome Announc, 2 
504 |a Dieterle, M.E., Fina Martin, J., Duran, R., Nemirovsky, S.I., Sanchez Rivas, C., Bowman, C., Characterization of prophages containing ‘evolved’ Dit/Tal modules in the genome of Lactobacillus casei BL23 (2016) Appl Microbiol Biotechnol, 100, pp. 9201-9215 
504 |a Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 486-501 
504 |a Farenc, C., Spinelli, S., Vinogradov, E., Tremblay, D., Blangy, S., Sadovskaya, I., Moineau, S., Cambillau, C., Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein (2014) J Virol, 88, pp. 7005-7015 
504 |a Flayhan, A., Vellieux, F.M., Lurz, R., Maury, O., Contreras-Martel, C., Girard, E., Boulanger, P., Breyton, C., Crystal structure of pb9, the distal tail protein of bacteriophage t5: a conserved structural motif among all siphophages (2014) J Virol, 88, pp. 820-828 
504 |a Goulet, A., Lai-Kee-Him, J., Veesler, D., Auzat, I., Robin, G., Shepherd, D.A., The opening of the SPP1 bacteriophage tail, a prevalent mechanism in Gram-positive-infecting siphophages (2011) J Biol Chem, 286, pp. 25397-25405 
504 |a Hino Mai, N., Lactic Acid Bacteria employed for beverage production. II. Isolation and some properties of a bacteriophage isolated during the fermentation of lactic acid beverage (1965) J Chem Soc Jpn, 39, pp. 472-476 
504 |a Holm, L., Kaariainen, S., Rosenstrom, P., Schenkel, A., Searching protein structure databases with DaliLite v.3 (2008) Bioinformatics, 24, pp. 2780-2781 
504 |a Hudson, K.L., Bartlett, G.J., Diehl, R.C., Agirre, J., Gallagher, T., Kiessling, L.L., Woolfson, D.N., Carbohydrate-aromatic interactions in proteins (2015) J Am Chem Soc, 137, pp. 15152-15160 
504 |a Kabsch, W., XDS (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 125-132 
504 |a Kanamaru, S., Leiman, P.G., Kostyuchenko, V.A., Chipman, P.R., Mesyanzhinov, V.V., Arisaka, F., Rossmann, M.G., Structure of the cell-puncturing device of bacteriophage T4 (2002) Nature, 415, pp. 553-557 
504 |a Kostyuchenko, V.A., Leiman, P.G., Chipman, P.R., Kanamaru, S., van Raaij, M.J., Arisaka, F., Mesyanzhinov, V.V., Rossmann, M.G., Three-dimensional structure of bacteriophage T4 baseplate (2003) Nat Struct Biol, 10, pp. 688-693 
504 |a Legrand, P., Collins, B., Blangy, S., Murphy, J., Spinelli, S., Gutierrez, C., The atomic structure of the phage tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules (2016) MBio, 7, p. 15 
504 |a Mahony, J., Kot, W., Murphy, J., Ainsworth, S., Neve, H., Hansen, L.H., Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny (2013) Appl Environ Microbiol, 79, pp. 4385-4392 
504 |a Mahony, J., McDonnell, B., Casey, E., van Sinderen, D., Phage-host interactions of cheese-making lactic acid bacteria (2016) Annu Rev Food Sci Technol, 7, pp. 267-285 
504 |a Mahony, J., Oliveira, J., Collins, B., Haanemaaijer, L., Lugli, G.A., Neve, H., Genetic and functional characterisation of the lactococcal P335 phage-host interactions (2017) BMC Genom, 18, p. 146 
504 |a Murphy, J., Bottacini, F., Mahony, J., Kelleher, P., Neve, H., Zomer, A., Nauta, A., van Sinderen, D., Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages (2016) Sci Rep, 6, p. 21345 
504 |a Otwinowski, Z., DENZO: oscillation data and reducing program (1993) Data Collection and Processing, , In, Sawyer, L., Isaacs, N.W., Bailey, S., (eds)., Warrington, UK, SERC Daresbury Laboratory 
504 |a Pape, T., Schneider, T.R., HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs (2004) J Appl Crystallogr, 37, pp. 844-853 
504 |a Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera–a visualization system for exploratory research and analysis (2004) J Comput Chem, 25, pp. 1605-1612 
504 |a Scheres, S.H., Nunez-Ramirez, R., Sorzano, C.O., Carazo, J.M., Marabini, R., Image processing for electron microscopy single-particle analysis using XMIPP (2008) Nat Protoc, 3, pp. 977-990 
504 |a Sciara, G., Bebeacua, C., Bron, P., Tremblay, D., Ortiz-Lombardia, M., Lichiere, J., Structure of lactococcal phage p2 baseplate and its mechanism of activation (2010) Proc Natl Acad Sci U S A, 107, pp. 6852-6857 
504 |a Sheldrick, G.M., A short history of SHELX (2008) Acta Crystallogr A, 64, pp. 112-122 
504 |a Soding, J., Biegert, A., Lupas, A.N., The HHpred interactive server for protein homology detection and structure prediction (2005) Nucleic Acids Res, 33, pp. W244-W248 
504 |a Sorzano, C.O., Marabini, R., Velazquez-Muriel, J., Bilbao-Castro, J.R., Scheres, S.H., Carazo, J.M., Pascual-Montano, A., XMIPP: a new generation of an open-source image processing package for electron microscopy (2004) J Struct Biol, 148, pp. 194-204 
504 |a Spinelli, S., Desmyter, A., Verrips, C.T., de Haard, H.J., Moineau, S., Cambillau, C., Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses (2006) Nat Struct Mol Biol, 13, pp. 85-89 
504 |a Spinelli, S., Veesler, D., Bebeacua, C., Cambillau, C., Structures and host-adhesion mechanisms of lactococcal siphophages (2014) Front Microbiol, 5, p. 3 
504 |a Taylor, N.M., Prokhorov, N.S., Guerrero-Ferreira, R.C., Shneider, M.M., Browning, C., Goldie, K.N., Stahlberg, H., Leiman, P.G., Structure of the T4 baseplate and its function in triggering sheath contraction (2016) Nature, 533, pp. 346-352 
504 |a Unger, T., Jacobovitch, Y., Dantes, A., Bernheim, R., Peleg, Y., Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression (2010) J Struct Biol, 172, pp. 34-44 
504 |a Vagin, A., Teplyakov, A., Molecular replacement with MOLREP (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 22-25 
504 |a Veesler, D., Cambillau, C., A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries (2011) Microbiol Mol Biol Rev, 75, pp. 423-433 
504 |a Veesler, D., Robin, G., Lichiere, J., Auzat, I., Tavares, P., Bron, P., Campanacci, V., Cambillau, C., Crystal structure of bacteriophage spp1 distal tail protein (gp19.1): a baseplate hub paradigm in gram-positive infecting phages (2010) J Biol Chem, 285, pp. 36666-36673 
504 |a Veesler, D., Spinelli, S., Mahony, J., Lichiere, J., Blangy, S., Bricogne, G., Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism (2012) Proc Natl Acad Sci U S A, 109, pp. 8954-8958 
504 |a Vinogradov, E., Sadovskaya, I., Grard, T., Chapot-Chartier, M.P., Structural studies of the rhamnose-rich cell wall polysaccharide of Lactobacillus casei BL23 (2016) Carbohydr Res, 435, pp. 156-161 
504 |a Yokokura, T., Phage receptor material in Lactobacillus casei cell wall. I. Effect of L-rhamnose on phage adsorption to the cell wall (1971) Jpn J Microbiol, 15, pp. 457-463 
520 3 |a Bacteriophage replication requires specific host-recognition. Some siphophages harbour a large complex, the baseplate, at the tip of their non-contractile tail. This baseplate holds receptor binding proteins (RBPs) that can recognize the host cell-wall polysaccharide (CWPS) and specifically attach the phage to its host. While most phages possess a dedicated RBP, the phage J-1 that infects Lactobacillus casei seemed to lack one. It has been shown that the phage J-1 distal tail protein (Dit) plays a role in host recognition and that its sequence comprises two inserted modules compared with ‘classical’ Dits. The first insertion is similar to carbohydrate-binding modules (CBMs), whereas the second insertion remains undocumented. Here, we determined the structure of the second insertion and found it also similar to several CBMs. Expressed insertion CBM2, but not CBM1, binds to L. casei cells and neutralize phage attachment to the bacterial cell wall and the isolated and purified CWPS of L. casei BL23 prevents CBM2 attachment to the host. Electron microscopy single particle reconstruction of the J-1 virion baseplate revealed that CBM2 is projected at the periphery of Dit to optimally bind the CWPS receptor. Taken together, these results identify J-1 evolved Dit as the phage RBP. © 2017 John Wiley & Sons Ltd  |l eng 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina 
593 |a Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, Marseille Cedex 09, 13288, France 
593 |a Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université (AMU), Campus de Luminy, Case 932, Marseille Cedex 09, 13288, France 
593 |a Université Lille Nord de France, Lille, F-59000, France 
593 |a Université du Littoral-Côte d'Opale, LR2B/UMT 08, Bassin Napoléon, BP 120, Boulogne-sur-Mer Cedex, F-62327, France 
690 1 0 |a CARBOHYDRATE BINDING PROTEIN 
690 1 0 |a CARBOHYDRATE 
690 1 0 |a LACTIC ACID 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a VIRAL PROTEIN 
690 1 0 |a AMINO TERMINAL SEQUENCE 
690 1 0 |a ARTICLE 
690 1 0 |a BACTERIAL CELL WALL 
690 1 0 |a BACTERIAL STRAIN 
690 1 0 |a BACTERIOPHAGE 
690 1 0 |a BACTERIUM ISOLATE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ELECTRON MICROSCOPY 
690 1 0 |a LACTIC ACID BACTERIUM 
690 1 0 |a LACTOBACILLUS CASEI 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN FOLDING 
690 1 0 |a VIRION 
690 1 0 |a BACTERIOPHAGE 
690 1 0 |a GENETICS 
690 1 0 |a HOST RANGE 
690 1 0 |a LACTOBACILLUS 
690 1 0 |a LACTOBACILLUS CASEI 
690 1 0 |a LACTOCOCCUS LACTIS 
690 1 0 |a METABOLISM 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a STRUCTURE ACTIVITY RELATION 
690 1 0 |a ULTRASTRUCTURE 
690 1 0 |a BACTERIOPHAGES 
690 1 0 |a CARBOHYDRATES 
690 1 0 |a HOST SPECIFICITY 
690 1 0 |a LACTIC ACID 
690 1 0 |a LACTOBACILLUS 
690 1 0 |a LACTOBACILLUS CASEI 
690 1 0 |a LACTOCOCCUS LACTIS 
690 1 0 |a MICROSCOPY, ELECTRON 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a STRUCTURE-ACTIVITY RELATIONSHIP 
690 1 0 |a VIRAL TAIL PROTEINS 
690 1 0 |a VIRION 
700 1 |a Spinelli, S. 
700 1 |a Sadovskaya, I. 
700 1 |a Piuri, M. 
700 1 |a Cambillau, C. 
773 0 |d Blackwell Publishing Ltd, 2017  |g v. 104  |h pp. 608-620  |k n. 4  |p Mol. Microbiol.  |x 0950382X  |w (AR-BaUEN)CENRE-6160  |t Molecular Microbiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014635701&doi=10.1111%2fmmi.13649&partnerID=40&md5=eade1e3608cf03064a999c5f5901e5cc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/mmi.13649  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0950382X_v104_n4_p608_Dieterle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0950382X_v104_n4_p608_Dieterle  |y Registro en la Biblioteca Digital 
961 |a paper_0950382X_v104_n4_p608_Dieterle  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75985