In-situ catalytic pyrolysis of peanut shells using modified natural zeolite

In-situ catalytic pyrolysis of peanut (Arachis hypogaea) shells was investigated employing modified clinoptilolite. Likewise, conventional pyrolysis of the shells was explored to quantify the deoxygenation degree of bio-oil. Two solid catalysts obtained from natural clinoptilolite were used: one whi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gurevich Messina, L.I
Otros Autores: Bonelli, P.R, Cukierman, A.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12863caa a22011177a 4500
001 PAPER-15007
003 AR-BaUEN
005 20230518204537.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85010376014 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FPTED 
100 1 |a Gurevich Messina, L.I. 
245 1 0 |a In-situ catalytic pyrolysis of peanut shells using modified natural zeolite 
260 |b Elsevier B.V.  |c 2017 
270 1 0 |m Cukierman, A.L.; Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía − PINMATE, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Ciudad Universitaria, Argentina; email: analea@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arromdee, P., Kuprianov, V.I., Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material (2012) Appl. Energy, 97, pp. 470-482 
504 |a Liu, X., Bi, X.T., Removal of inorganic constituents from pine barks and switchgrass (2011) Fuel Process. Technol., 92, pp. 1273-1279 
504 |a Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S., A review on biomass as a fuel for boilers (2011) Renew. Sust. Energ. Rev., 15, pp. 2262-2289 
504 |a Menon, V., Rao, M., Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept (2012) Prog. Energy Combust. Sci., 38, pp. 522-550 
504 |a Demirbas, A., Political, economic and environmental impacts of biofuels: a review (2009) Appl. Energy, 86, pp. S108-S117 
504 |a Cukierman, A.L., Nunell, G.V., Fernandez, M.E., De Celis, J., Kim, M.R., Gurevich Messina, L., Bonelli, P.R., Thermochemical processing of wood from invasive arboreal species for sustainable bioenergy generation and activated carbons production (2012) Invasive Species: Threats, Ecological Impact and Control Methods, pp. 1-45. , J.J. Blanco A.T. Fernandes Nova Publishers Inc. New York 
504 |a Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading (2012) Biomass Bioenergy, 38, pp. 68-94 
504 |a Zhang, L., Xu, C., Champagne, P., Overview of recent advances in thermo-chemical conversion of biomass (2010) Energy Convers. Manag., 51, pp. 969-982 
504 |a Jacobson, K., Maheria, K.C., Kumar Dalai, A., Bio-oil valorization: a review (2013) Renew. Sust. Energ. Rev., 23, pp. 91-106 
504 |a Chiaramonti, D., Oasmaa, A., Solantausta, Y., Power generation using fast pyrolysis liquids from biomass (2007) Renew. Sust. Energ. Rev., 11, pp. 1056-1086 
504 |a Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., Chiaramonti, D., Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass (2014) Appl. Energy, 116, pp. 178-190 
504 |a Vispute, T.P., Zhang, H., Sanna, A., Xiao, R., Huber, G.W., Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils (2010) Science, 330, pp. 1222-1227 
504 |a Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., Knudsen, K.G., Jensen, A.D., A review of catalytic upgrading of bio-oil to engine fuels (2011) Appl. Catal. A Gen., 407, pp. 1-19 
504 |a Mihalcik, D.J., Mullen, C.A., Boateng, A.A., Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components (2011) J. Anal. Appl. Pyrolysis, 92, pp. 224-232 
504 |a Aho, A., DeMartini, N., Pranovich, A., Krogell, J., Kumar, N., Eränen, K., Holmbom, B., Murzin, D.Y., Pyrolysis of pine and gasification of pine chars–influence of organically bound metals (2013) Bioresour. Technol., 128, pp. 22-29 
504 |a Wang, K., Johnston, P.A., Brown, R.C., Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system (2015) Bioresour. Technol., 173, pp. 124-131 
504 |a Adjaye, J.D., Katikaneni, S.P.R., Bakhshi, N.N., Catalytic conversion of a biofuel to hydrocarbons: effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution (1996) Fuel Process. Technol., 48, pp. 115-143 
504 |a Perego, C., Bagatin, R., Tagliabue, M., Vignola, R., Zeolites and related mesoporous materials for multi-talented environmental solutions (2013) Microporous Mesoporous Mater., 166, pp. 37-49 
504 |a Pütün, E., Uzun, B.B., Pütün, A.E., Rapid pyrolysis of olive residue. 2. Effect of catalytic upgrading of pyrolysis vapors in a two-stage fixed-bed reactor (2009) Energy Fuels, pp. 2248-2258 
504 |a Rajić, N., Logar, N.Z., Rečnik, A., El-Roz, M., Thibault-Starzyk, F., Sprenger, P., Hannevold, L., Stöcker, M., Hardwood lignin pyrolysis in the presence of nano-oxide particles embedded onto natural clinoptilolite (2013) Microporous Mesoporous Mater., 176, pp. 162-167 
504 |a Milovanović, J., Stensrød, R., Myhrvold, E., Tschentscher, R., Stöcker, M., Lazarevic, S., Rajić, N., Modification of natural clinoptilolite and ZSM-5 with different oxides and studying of the obtained products in lignin pyrolysis (2015) J. Serbian Chem. Soc., 80, pp. 717-729 
504 |a Aho, A., Kumar, N., Eränen, K., Salmi, T., Hupa, M., Murzin, D.Y., Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure (2008) Fuel, 87, pp. 2493-2501 
504 |a Botto, I.L., Canafoglia, M.E., Lick, I.D., Cabello, C.I., Schalamuk, I.B., Minelli, G., Ferraris, G., Environmental application of natural microporous aluminosilicates: NOx reduction by propane over modified clinoptilolite zeolite (2004) J. Arg. Chem. Soc., 92, pp. 139-153 
504 |a Emeis, C.A., Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts (1993) J. Catal., 141, pp. 347-354 
504 |a Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L., Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes (2014) Ind. Crop. Prod., 62, pp. 437-445 
504 |a Rover, M.R., Brown, R.C., Quantification of total phenols in bio-oil using the Folin–Ciocalteu method (2013) J. Anal. Appl. Pyrolysis, 104, pp. 366-371 
504 |a Rover, M.R., Johnston, P.A., Lamsal, B.P., Brown, R.C., Total water-soluble sugars quantification in bio-oil using the phenol–sulfuric acid assay (2013) J. Anal. Appl. Pyrolysis, 104, pp. 194-201 
504 |a Yaşyerli, S., Ar, I., Doğu, G., Doğu, T., Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber (2002) Chem. Eng. Process., 41, pp. 785-792 
504 |a Tao, Y.F., Qiu, Y., Fang, S.Y., Liu, Z.Y., Wang, Y., Zhu, J.H., Trapping the lead ion in multi-components aqueous solution by natural clinoptilolite (2010) J. Hazard. Mater., 180, pp. 282-288 
504 |a Ünaldı, T., Mızrak, İ., Kadir, S., Physicochemical characterisation of natural K-clinoptilolite and heavy-metal forms from Gördes (Manisa, western Turkey) (2013) J. Mol. Struct., 1054-1055, pp. 349-358 
504 |a Stöcker, M., Gas phase catalysis by zeolites (2005) Microporous Mesoporous Mater., 82, pp. 257-292 
504 |a González, J.D., Kim, M.R., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., Pyrolysis of biomass from sustainable energy plantations: effect of mineral matter reduction on kinetics and charcoal pore structure (2008) Energy Sources, Part A: Recover, Util. Environ. Effects, 30, pp. 809-817 
504 |a Corma, A., Huber, G., Sauvanaud, L., Oconnor, P., Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst (2007) J. Catal., 247, pp. 307-327 
504 |a Ma, Z., Troussard, E., Van Bokhoven, J.A., Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis (2012) Appl. Catal. A Gen., 423-424, pp. 130-136 
504 |a Patwardhan, P., Satrio, J.A., Brown, R.C., Shanks, B.H., Product distribution from fast pyrolysis of glucose-based carbohydrates (2009) J. Anal. Appl. Pyrolysis, 86, pp. 323-330 
504 |a Ohra-aho, T., Linnekoski, J., Catalytic pyrolysis of lignin by using analytical pyrolysis-GC–MS (2015) J. Anal. Appl. Pyrolysis, 113, pp. 186-192 
504 |a Collard, F.-X., Blin, J., A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin (2014) Renew. Sust. Energ. Rev., 38, pp. 594-608 
520 3 |a In-situ catalytic pyrolysis of peanut (Arachis hypogaea) shells was investigated employing modified clinoptilolite. Likewise, conventional pyrolysis of the shells was explored to quantify the deoxygenation degree of bio-oil. Two solid catalysts obtained from natural clinoptilolite were used: one which retained most of the native cations and another one subjected to ion exchange treatment to develop Brønsted acid sites. These catalysts were characterized using different techniques, such as scanning electron microscopy with X-ray microanalysis, Fourier transform infrared spectroscopy by pyridine adsorption, and nitrogen sorptometry. Assays in a bench scale installation based on a fixed bed reactor were conducted at 500 °C and the yields of the three kinds of pyrolysis products (bio-oil, bio-char and gases) were determined. Likewise, the composition and other physical properties of the bio-oil and gases were investigated. Both catalysts led to reduce the oxygen content of the bio-oil, improving its high heating value. On the other hand, catalytic pyrolysis promoted a slight reduction in bio-oil production at expenses of an increase in gases generation. The catalyst subjected to ion exchange performed better than the native form as less water was generated in the catalytic cracking. © 2017 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: 2188 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBA 20020130100605BA 
536 |a Detalles de la financiación: PIP 0183 
536 |a Detalles de la financiación: The authors gratefully acknowledge Agencia Nacional de Promoci?n Cient?fica y Tecnol?gica (ANPCYT?FONCYT PICT 2012?2188), Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET PIP 0183), and Universidad de Buenos Aires (UBA 20020130100605BA) from Argentina, for financial support. 
593 |a Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía − PINMATE, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Ciudad Universitaria, Buenos Aires, C1428BGA, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, C1425FQB, Argentina 
593 |a Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina 
690 1 0 |a BIO-OIL QUALITY IMPROVEMENT 
690 1 0 |a CATALYTIC PYROLYSIS 
690 1 0 |a CLINOPTILOLITE 
690 1 0 |a PEANUT SHELLS 
690 1 0 |a BIOFUELS 
690 1 0 |a CATALYSTS 
690 1 0 |a CHEMICAL REACTORS 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a ION EXCHANGE 
690 1 0 |a OILSEEDS 
690 1 0 |a PYROLYSIS 
690 1 0 |a SCANNING ELECTRON MICROSCOPY 
690 1 0 |a SHELLS (STRUCTURES) 
690 1 0 |a ZEOLITES 
690 1 0 |a BIO OIL 
690 1 0 |a CATALYTIC PYROLYSIS 
690 1 0 |a CLINOPTILOLITES 
690 1 0 |a ION-EXCHANGE TREATMENT 
690 1 0 |a MODIFIED CLINOPTILOLITE 
690 1 0 |a NATURAL CLINOPTILOLITE 
690 1 0 |a PEANUT SHELLS 
690 1 0 |a PYRIDINE ADSORPTION 
690 1 0 |a CATALYTIC CRACKING 
700 1 |a Bonelli, P.R. 
700 1 |a Cukierman, A.L. 
773 0 |d Elsevier B.V., 2017  |g v. 159  |h pp. 160-167  |p Fuel Process Technol  |x 03783820  |t Fuel Processing Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010376014&doi=10.1016%2fj.fuproc.2017.01.032&partnerID=40&md5=6c3a99e1e1c3acfb0b494b19daec41d8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.fuproc.2017.01.032  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03783820_v159_n_p160_GurevichMessina  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03783820_v159_n_p160_GurevichMessina  |y Registro en la Biblioteca Digital 
961 |a paper_03783820_v159_n_p160_GurevichMessina  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75960