Lead effects on Brassica napus photosynthetic organs

In this study, effects of lead on ultracellular structure and pigment contents of Brassica napus were examined. Pb(II) was added in soluble form to soil prior to sowing. Pb contents were measured in plant organs at the ontogenetic stages of flowering (FL) and physiological maturity (PM). Pigment con...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ferreyroa, G.V
Otros Autores: Lagorio, M.G, Trinelli, M.A, Lavado, R.S, Molina, F.V
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press 2017
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13482caa a22015497a 4500
001 PAPER-14950
003 AR-BaUEN
005 20230518204534.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85013896114 
024 7 |2 cas  |a lead, 7439-92-1, 13966-28-4; chlorophyll, 1406-65-1, 15611-43-5; Antioxidants; Chlorophyll; Lead; Soil; Soil Pollutants 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EESAD 
100 1 |a Ferreyroa, G.V. 
245 1 0 |a Lead effects on Brassica napus photosynthetic organs 
260 |b Academic Press  |c 2017 
270 1 0 |m Molina, F.V.Argentina; email: fmolina@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Adriano, D.C., (2001) Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, , 2nd edition Springer New York 
504 |a Ali, B., Wang, B., Ali, S., Ghani, M.A., Hayat, M.T., Yang, C., Xu, L., Zhou, W.J., 5-Aminolevulinic acid ameliorates the Growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L (2013) J. Plant Growth Regul., 32, pp. 604-614 
504 |a Azimzadeh, Y., Shirvani, M., Shariatmadari, H., Green manure and overlapped Rhizosphere effects on Pb chemical forms in soil and plant Uptake in Maize/Canola intercrop Systems: a Rhizobox study (2014) Soil Sediment Contam. Int. J., 23, pp. 677-690 
504 |a Bermudez, G.M.A., Moreno, M., Invernizzi, R., Plá, R., Pignata, M.L., Evaluating top soil trace element pollution in the vicinity of a cement plant and a former open-cast uranium mine in central Argentina (2010) J. Soils Sediment., 10, pp. 1308-1323 
504 |a Bilal Shakoor, M., Ali, S., Hameed, A., Farid, M., Hussain, S., Yasmeen, T., Najeeb, U., Hasan Abbasi, G., Citric acid improves lead (pb) phytoextraction in Brassica napus L. by mitigating pb-induced morphological and biochemical damages (2014) Ecotoxicol. Environ. Saf., 109, pp. 38-47 
504 |a Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B.D., Raskin, I., Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents (1997) Environ. Sci. Technol., 31, pp. 860-865 
504 |a Briat, J.-F., Lebrun, M., Plant responses to metal toxicity (1999) Comptes Rendus Académie Sci. – Ser. III - Sci. Vie, 322, pp. 43-54 
504 |a Cordon, G.B., Métodos ópticos no destructivos para monitoreo de salud vegetal (Ph.D. Thesis) (2009), Universidad de Buenos Aires Buenos Aires, Argentina; Cordon, G.B., Lagorio, M.G., Absorption and scattering coefficients: a biophysical-chemistry experiment using reflectance spectroscopy (2007) J. Chem. Educ., 84, p. 1167 
504 |a Cordon, G.B., Lagorio, M.G., Paruelo, J.M., Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence (2016) J. Plant Physiol., 199, pp. 100-110 
504 |a Cordon, G.B., Gismondi, S., Nievas, A.V., Lagorio, M.G., Non-destructive assessment of water and pigments in leaves from the remission function using the Kubelka-Munk theory (2010) Caivano, pp. 397-400. , In: J.L., López, M.A. (Eds.), Proceedings of the AIC 2010 Color and Food. Presented at the AIC 2010 Color and Food, Interim Meeting of the International Color Association, Grupo Argentino del Color, Mar del Plata, pp 
504 |a Dahmani-Muller, H., Van Oort, F., Gelie, B., Balabane, M., Strategies of heavy metal uptake by three plant species growing near a metal smelter (2000) Environ. Pollut, 109, pp. 231-238 
504 |a Dinelli, E., Lombini, A., Metal distributions in plants growing on copper mine spoils in Northern Apennines, Italy: the evaluation of seasonal variations (1996) Appl. Geochem. Environ. Geochem., 11, pp. 375-385 
504 |a Ferreyroa, G.V., Montenegro, A.C., Tudino, M.B., Lavado, R.S., Molina, F.V., Time evolution of Pb(II) speciation in Pampa soil fractions (2014) Chem. Speciat. Bioavailab., 26, pp. 210-218 
504 |a Filella, I., Porcar-Castell, A., Munné-Bosch, S., Bäck, J., Garbulsky, M.F., Peñuelas, J., PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle (2009) Int. J. Remote Sens., 30, pp. 4443-4455 
504 |a Gamon, J.A., Peñuelas, J., Field, C.B., A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency (1992) Remote Sens. Environ., 41, pp. 35-44 
504 |a Gamon, J.A., Field, C.B., Bilger, W., Björkman, O., Fredeen, A.L., Peñuelas, J., Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies (1990) Oecologia, 85, pp. 1-7 
504 |a Garbulsky, M.F., Peñuelas, J., Gamon, J., Inoue, Y., Filella, I., The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis (2011) Remote Sens. Environ., 115, pp. 281-297 
504 |a Gausman, H.W., Allen, W.A., Optical parameters of leaves of 30 plant species (1973) Plant Physiol., 52, pp. 57-62 
504 |a Gonzalez, J., Cruzate, G.G., Panigatti, J.L., Suelos de la costa NE del Río Paraná (prov (2013), de Bs. As.). 1a. ed. INTA ediciones, San Pedro, pcia. Bs. As., Argentina; Islam, E., Liu, D., Li, T., Yang, X., Jin, X., Mahmood, Q., Tian, S., Li, J., Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi (2008) J. Hazard. Mater., 154, pp. 914-926 
504 |a Karak, T., Bhattacharyya, P., Kumar Paul, R., Das, D.K., Metal accumulation, biochemical response and yield of Indian mustard grown in soil amended with rural roadside pond sediment (2013) Ecotoxicol. Environ. Saf., 92, pp. 161-173 
504 |a Kumar, L., Schmidt, K., Dury, S., Skidmore, A., Imaging Spectrometry and Vegetation Science (2002) Imaging Spectrometry. Basic Principles and Prospective Applications, Remote Sensing and Digital Image Processing., pp. 111-155. , F.D. Meer S.M.D. van der Jong Springer Netherlands, Dordrecht 
504 |a Lavado, R.S., Rodríguez, M., Alvarez, R., Taboada, M.A., Zubillaga, M.S., Transfer of potentially toxic elements from biosolid-treated soils to maize and wheat crops (2007) Agric. Ecosyst. Environ., 118, pp. 312-318 
504 |a Lavado, R.S., Rodríguez, M.S., Scheiner, J.D., Taboada, M.A., Rubio, G., Alvarez, R., Alconada, M., Zubillaga, M.S., Heavy metals in soils of Argentina: comparison between urban and agrcultural soils (1998) Commun. Soil Sci. Plant Anal., 29, pp. 1913-1917 
504 |a Liu, D., Jiang, W., Liu, C., Xin, C., Hou, W., Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)] (2000) Bioresour. Technol., 71, pp. 273-277 
504 |a Miralles, D.J., Windauer, L.B., Gómez, N.V., Factores que regulan el desarrollo de los cultivos de granos (2003) Producción de Granos. Bases Funcionales Para Su Manejo, , E.H. Satorre R.L. Benech Arnold G.A. Slafer E.B. de la Fuente D.J. Miralles M.E. Otegui R. Savin Editorial Facultad de Agronomía, Buenos Aires Argentina 
504 |a Peñuelas, J., Filella, I., Gamon, J.A., Assessment of photosynthetic radiation-use efficiency with spectral reflectance (1995) New Phytol., 131, pp. 291-296 
504 |a Perronnet, K., Schwartz, C., Morel, J.L., Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil (2003) Plant Soil, 249, pp. 19-25 
504 |a Rodriguez, J.H., Salazar, M.J., Steffan, L., Pignata, M.L., Franzaring, J., Klumpp, A., Fangmeier, A., Assessment of Pb and Zn contents in agricultural soils and soybean crops near to a former battery recycling plant in Córdoba, Argentina (2014) J. Geochem. Explor., 145, pp. 129-134 
504 |a Sharma, P., Dubey, R.S., Lead toxicity in plants (2005) Braz. J. Plant Physiol., 17, pp. 35-52 
504 |a Solhi, M., Shareatmadari, H., Hajabbasi, M.A., Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus (2005) Water Air Soil Pollut., 167, pp. 59-71 
504 |a Tian, T., Ali, B., Qin, Y., Malik, Z., Gill, R.A., Ali, S., Zhou, W., Alleviation of lead toxicity by 5-Aminolevulinic acid is related to elevated growth, photosynthesis, and suppressed ultrastructural damages in oilseed rape (2014) BioMed. Res. Int., 2014, pp. 1-11 
504 |a Wong, C.S.C., Li, X., Thornton, I., Urban environmental geochemistry of trace metals (2006) Environ. Pollut., 142, pp. 1-16 
504 |a Yaryura, P., Cordon, G., Leon, M., Kerber, N., Pucheu, N., Rubio, G., García, A., Lagorio, M.G., Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of Cotyledons of oilseed rape (Brassica napus L.) (2009) J. Agron. Crop Sci., 195, pp. 186-196 
520 3 |a In this study, effects of lead on ultracellular structure and pigment contents of Brassica napus were examined. Pb(II) was added in soluble form to soil prior to sowing. Pb contents were measured in plant organs at the ontogenetic stages of flowering (FL) and physiological maturity (PM). Pigment contents were evaluated through reflectance measurements. Pb content in organs was found to decrease in the order; roots>stems>leaves. Lead content in senescent leaves at FL stage was significantly higher than harvested leaves, strongly suggesting a detoxification mechanism. Leaves and stems harvested at the PM stage showed damage at subcellular level, namely chloroplast disorganization, cell wall damage and presence of osmiophilic bodies. Chlorophyll content increased in the presence of Pb at the FL stage, compared with control; at the PM stage, chlorophyll contents decreased with low Pb concentration but showed no significant differences with control at high Pb soil concentration. The results suggest an increase in antioxidants at low Pb concentration and cell damage at higher lead concentration. © 2017 Elsevier Inc.  |l eng 
593 |a Instituto de Química Física de Materiales, Ambiente y Energía, CONICET and Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Geociencias Básicas y Aplicadas de Buenos Aires, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a CELL DAMAGE 
690 1 0 |a HEAVY METALS 
690 1 0 |a PHOTOSYNTHETIC PIGMENTS 
690 1 0 |a SOIL POLLUTION 
690 1 0 |a LEAD 
690 1 0 |a PIGMENT 
690 1 0 |a ANTIOXIDANT 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a LEAD 
690 1 0 |a SOIL 
690 1 0 |a SOIL POLLUTANT 
690 1 0 |a ANGIOSPERM 
690 1 0 |a ANTIOXIDANT 
690 1 0 |a DETOXIFICATION 
690 1 0 |a LEAD 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a POLLUTION EFFECT 
690 1 0 |a POLLUTION EXPOSURE 
690 1 0 |a SOIL POLLUTION 
690 1 0 |a ULTRASTRUCTURE 
690 1 0 |a ARTICLE 
690 1 0 |a CELL DAMAGE 
690 1 0 |a CELL ULTRASTRUCTURE 
690 1 0 |a CELL WALL 
690 1 0 |a CHLOROPHYLL CONTENT 
690 1 0 |a CHLOROPLAST 
690 1 0 |a CONCENTRATION (PARAMETERS) 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DETOXIFICATION 
690 1 0 |a NONHUMAN 
690 1 0 |a PLANT LEAF 
690 1 0 |a PLANT ROOT 
690 1 0 |a PLANT STEM 
690 1 0 |a RAPESEED 
690 1 0 |a SENESCENCE 
690 1 0 |a SOIL ANALYSIS 
690 1 0 |a ANALYSIS 
690 1 0 |a BIOMASS 
690 1 0 |a CHEMISTRY 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a ENVIRONMENTAL MONITORING 
690 1 0 |a METABOLISM 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a RAPESEED 
690 1 0 |a SOIL 
690 1 0 |a SOIL POLLUTANT 
690 1 0 |a TOXICITY 
690 1 0 |a ULTRASTRUCTURE 
690 1 0 |a BRASSICA NAPUS 
690 1 0 |a ANTIOXIDANTS 
690 1 0 |a BIOMASS 
690 1 0 |a BRASSICA NAPUS 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a CHLOROPLASTS 
690 1 0 |a ENVIRONMENTAL MONITORING 
690 1 0 |a LEAD 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a PLANT LEAVES 
690 1 0 |a PLANT ROOTS 
690 1 0 |a PLANT STEMS 
690 1 0 |a SOIL 
690 1 0 |a SOIL POLLUTANTS 
651 4 |a ARGENTINA 
651 4 |a ARGENTINA 
700 1 |a Lagorio, M.G. 
700 1 |a Trinelli, M.A. 
700 1 |a Lavado, R.S. 
700 1 |a Molina, F.V. 
773 0 |d Academic Press, 2017  |g v. 140  |h pp. 123-130  |p Ecotoxicol. Environ. Saf.  |x 01476513  |w (AR-BaUEN)CENRE-4483  |t Ecotoxicology and Environmental Safety 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013896114&doi=10.1016%2fj.ecoenv.2017.02.031&partnerID=40&md5=9b21522592581c7d6fe694533cd659c5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ecoenv.2017.02.031  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01476513_v140_n_p123_Ferreyroa  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01476513_v140_n_p123_Ferreyroa  |y Registro en la Biblioteca Digital 
961 |a paper_01476513_v140_n_p123_Ferreyroa  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75903