Assessment of satellite precipitation estimates over the slopes of the subtropical Andes

A validation of four satellite daily precipitation estimates at a spatial resolution of 0.25° is performed over the subtropical Andes, an area of highly complex topography: The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA, 3B42 V7 and RT), the Climate Predic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Hobouchian, M.P
Otros Autores: Salio, P., García Skabar, Y., Vila, D., Garreaud, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12698caa a22011417a 4500
001 PAPER-14912
003 AR-BaUEN
005 20230518204531.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85013774959 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Hobouchian, M.P. 
245 1 0 |a Assessment of satellite precipitation estimates over the slopes of the subtropical Andes 
260 |b Elsevier Ltd  |c 2017 
270 1 0 |m Hobouchian, M.P.; Departamento de Investigación y Desarrollo, Servicio Meteorológico Nacional, Av. Cnel. M. Dorrego 4019, Argentina; email: phobouchian@smn.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Amitai, E., Lord, X., Sempere-Torres, D., Comparison of TRMM radar rainfall estimates with NOAA next generation QPE (2009) J. Meteorol. Soc. Jpn., 87A, pp. 109-118 
504 |a Amitai, E., Petersen, W., Llort, X., Vasiloff, S., Multiplatform comparisons of rain intensity for extreme precipitation events (2012) IEEE Trans. Geosci. Remote Sens., 50 (3), pp. 675-686 
504 |a Blacutt, L.A., Dirceu, L.H., de Gonçalves, L.G.G., Vila, D.A., Andrade, M., Precipitation comparison for the CFSR, MERRA, TRMM3B42 and combined scheme datasets in Bolivia (2015) 6th WIPWG Special Issue Atmospheric Research, 163, pp. 117-131 
504 |a Demaria, E.M.C., Rodriguez, D.A., Ebert, E.E., Salio, P., Su, F., Valdes, J.B., Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach (2011) J. Geophys. Res., 116 
504 |a Dinku, T., Chidzambwab, S., Ceccatoa, P., Connora, S.J., Ropelewskia, C.F., Validation of high-resolution satellite rainfall products over complex terrain (2008) Int. J. Remote Sens., 29 (14), pp. 4097-4110 
504 |a Dinku, T., Ruiz, F., Connor, S.J., Ceccato, P., Validation and intercomparison of satellite rainfall estimates over Colombia (2010) J. Appl. Meteorol. Climatol., 49 (5), pp. 1004-1014 
504 |a Dinku, T., Ceccato, P., Connor, S.J., Challenges of satellite rainfall estimation over mountainous and arid parts of east Africa (2011) Int. J. Remote Sens., 32 (21), pp. 5965-5979 
504 |a Ebert, E.E., Janowiak, J.E., Kidd, C., Comparison of near-real-time precipitation estimates from satellite observations and numerical models (2007) Bull. Am. Meteorol. Soc., 88, pp. 47-64 
504 |a Gao, Y.C., Liu, M.F., Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau (2012) Hydrol. Earth Syst. Sci. Discuss., 9, pp. 9503-9532 
504 |a Garreaud, R., Warm winter storms in central Chile (2013) J. Hydrometeorol., 14, pp. 1515-1534 
504 |a Habib, E., El Saadani, M., Haile, A.T., Climatology-focused evaluation of CMORPH and TMPA satellite rainfall products over the Nile Basin (2012) J. Appl. Meteorol. Climatol., 51 (12), pp. 2105-2121 
504 |a Hirpa, F.A., Gebremichael, M., Hopson, T., Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia (2010) J. Appl. Meteorol. Climatol., 49 (5), pp. 1044-1051 
504 |a Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Stocker, E.F., The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales (2007) J. Hydrometeorol., 8, pp. 38-55 
504 |a Huffman, G.J., Bolvin, D.T., TRMM and Other Data Precipitation Data Set Documentation, Lab. for Atmos (2014), http://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf, NASA Goddard Space Flight Center and Science Systems and Applications (accessed 15.11.01); Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. NASA/GSFC Code 612, 47 (2015), http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf, (accessed 16.09.19); Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution (2004) J. Hydrometeorol., 5, pp. 487-503 
504 |a Kidd, C., Levizzani, V., Status of satellite precipitation retrievals (2011) Hydrol. Earth Syst. Sci., 15, pp. 1109-1116 
504 |a Kucera, P.A., Ebert, E.E., Turk, F.J., Levizzani, V., Kirschbaum, D., Tapiador, F.J., Loew, A., Borsche, M., Precipitation from space: advancing earth system science (2013) Bull. Am. Meteorol. Soc., 94, pp. 365-375 
504 |a Liebmann, B., Allured, D., Daily precipitation grids for South America (2005) Bull. Am. Meteorol. Soc., 86, pp. 1567-1570 
504 |a Liu, C., Zipser, E.J., “Warm rain” in the tropics: seasonal and regional distributions based on 9 yr of TRMM data (2009) J. Climatol., 22, pp. 767-779 
504 |a Nurmi, P., Recommendations on the verification of local weather forecasts (2003) ECMWF Tech. Memo. N., 430. , (19pp) 
504 |a Okamoto, K., Iguchi, T., Takahashi, N., Iwanami, K., Ushio, T., The global satellite mapping of precipitation (GSMaP) project (2005) 25th IGARSS Proceedings, pp. 3414-3416 
504 |a Porcu, F., Milani, L., Petracca, M., On the uncertainties in validating satellite instantaneous rainfall estimates with raingauge operational network (2014) Atmos. Res., 144, pp. 73-81 
504 |a Rosenfeld, D., Woodley, W.L., Krauss, T.W., Makitov, V., Aircraft microphysical documentation from cloud base to anvils of hailstorm feeder clouds in Argentina (2006) J. Appl. Meteorol. Climatol., 45, pp. 1261-1281 
504 |a Ruiz, J.J., Evaluation of different methodologies to calibrate CMORPH over South America (2009) Revista Brasileira de Meteorolologia, 24 (4), pp. 473-488 
504 |a Salio, P., Hobouchian, M.P., García Skabar, Y., Vila, D., Evaluation of high-resolution satellite precipitation estimates over Southern South America using a dense rain gauge network (2015) 6th WIPWG Special Issue Atmospheric Research, 163, pp. 146-161 
504 |a Sanchez, J.L., Gil-Robles, B., Dessens, J., Martin, E., Lopez, L., Marcosa, J.L., Berthetb, C., García-Ortega, E., Characterization of hailstone size spectra in hailpad networks in France, Spain, and Argentina (2011) Atmos. Res., 93 (1-3), pp. 641-654 
504 |a Scofield, R.A., Kuligowski, R.J., Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events (2003) Weather Forecast., 18, pp. 1037-1051 
504 |a Sorooshian, S., Hsu, K.L., Gao, X., Gupta, H.V., Imam, B., Braithwaite, D., Evaluation of PERSIANN system satellite-based estimates of tropical rainfall (2000) Bull. Am. Meteorol. Soc., 81, pp. 2035-2046 
504 |a Su, F., Hong, Y., Lettenmaier, D.P., Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin (2008) J. Hydrometeorol., 9 (4), pp. 622-640 
504 |a Tapiador, F.J., Turk, F.J., Petersen, W., Hou, A.Y., García-Ortega, E., Machado, L.A.T., Angelis, C.F., De Castro, M., Global precipitation measurement: methods, datasets and applications (2012) Atmos. Res., 104-105, pp. 70-97 
504 |a Viale, M., Nuñez, M.N., Climatology of winter orographic precipitation over the Subtropical Central Andes and associated synoptic and regional characteristics (2011) J. Hydrometeorol., 12, pp. 481-507 
504 |a Viale, M., Houze, R.A., Jr., Rasmussen, K.L., Upstream orographic enhancement of a narrow cold-frontal rainband approaching the Andes (2013) Mon. Weather Rev., 141, pp. 1708-1730 
504 |a Viale, M., Garreaud, R., Summer precipitation events over the western slope of the Subtropical Andes (2014) Mon. Weather Rev., 142, pp. 1074-1092 
504 |a Vicente, G., Scofield, R., Davenport, J., The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution (2001) Int. J. Remote Sens., 23 (2), pp. 221-230 
504 |a Vila, D.A., Scofield, R.A., Davenport, J., (2002) Satellite rainfall estimation over South America: evaluation of two major events, AMS 16th Conference on Hydrology, pp. 33-36 
504 |a Vila, D.A., De Goncalves, L., Toll, D.L., Rozante, J.R., Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America (2009) J. Hydrometeorol., 10, pp. 533-543 
504 |a Zipser, E.J., Cecil, D.J., Liu, C., Nesbitt, S.W., Yorty, D.P., Where are the most intense thunderstorms on Earth? (2006) Bull. Am. Meteorol. Soc., 87, pp. 1057-1071 
520 3 |a A validation of four satellite daily precipitation estimates at a spatial resolution of 0.25° is performed over the subtropical Andes, an area of highly complex topography: The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA, 3B42 V7 and RT), the Climate Prediction Center Morphing technique (CMORPH) and the Hydro-Estimator (HYDRO). Remote mountainous regions represent a major challenge for these satellite data products and for studies examining their quality with surface data. For the assessment of the satellite products, a period of seven years from January 1st 2004 to December 31st 2010 was considered. Different statistics were analyzed considering their variability in the study area and identifying their main differences between the warm and cold seasons. The results indicate a decrease in winter errors which coincides with the wet season over the windward side of the Andes. Also, a significant underestimation of precipitation is observed for all estimates throughout the period analyzed. The analysis with respect to terrain height shows a greater dependence of errors with topography for all the algorithms that combine infrared and passive microwave data, HYDRO providing the most stable result. The main limitations of the estimates associated with the type of precipitating event and their location relative to the orography are assessed. Finally, the analysis of two intense precipitation events is presented and allows the assessment of the latest advances in satellite derived estimates with the launch of the Global Precipitation Measurement. © 2017 Elsevier B.V.  |l eng 
593 |a Departamento de Investigación y Desarrollo, Servicio Meteorológico Nacional, Argentina 
593 |a Centro de Investigaciones del Mar y la Atmósfera, CONICET UBA, Argentina 
593 |a Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires, Argentina 
593 |a UMI-Instituto Franco Argentino sobre Estudios del Clima y sus Impactos, Argentina 
593 |a CONICET, Argentina 
593 |a División de Satélites y Sistemas Ambientales, CPTEC, Brazil 
593 |a Departamento de Geofísica, Universidad de Chile, Chile 
690 1 0 |a PRECIPITATION 
690 1 0 |a SATELLITE PRODUCTS 
690 1 0 |a TOPOGRAPHY 
690 1 0 |a PRECIPITATION (CHEMICAL) 
690 1 0 |a RAIN 
690 1 0 |a RAIN GAGES 
690 1 0 |a SATELLITES 
690 1 0 |a TOPOGRAPHY 
690 1 0 |a TROPICS 
690 1 0 |a CLIMATE PREDICTION CENTERS 
690 1 0 |a DAILY PRECIPITATIONS 
690 1 0 |a GLOBAL PRECIPITATION MEASUREMENTS 
690 1 0 |a INTENSE PRECIPITATION 
690 1 0 |a PASSIVE MICROWAVE DATA 
690 1 0 |a SATELLITE PRECIPITATION ESTIMATES 
690 1 0 |a SATELLITE PRODUCTS 
690 1 0 |a TROPICAL RAINFALL MEASURING MISSIONS 
690 1 0 |a PRECIPITATION (METEOROLOGY) 
690 1 0 |a ERROR ANALYSIS 
690 1 0 |a PRECIPITATION ASSESSMENT 
690 1 0 |a SATELLITE DATA 
690 1 0 |a SATELLITE IMAGERY 
690 1 0 |a SLOPE 
690 1 0 |a SPATIAL RESOLUTION 
690 1 0 |a TOPOGRAPHIC EFFECT 
690 1 0 |a ANDES 
700 1 |a Salio, P. 
700 1 |a García Skabar, Y. 
700 1 |a Vila, D. 
700 1 |a Garreaud, R. 
773 0 |d Elsevier Ltd, 2017  |g v. 190  |h pp. 43-54  |p Atmos. Res.  |x 01698095  |w (AR-BaUEN)CENRE-3862  |t Atmospheric Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013774959&doi=10.1016%2fj.atmosres.2017.02.006&partnerID=40&md5=898991373e08c77f0d815b1b4a77567b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.atmosres.2017.02.006  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01698095_v190_n_p43_Hobouchian  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01698095_v190_n_p43_Hobouchian  |y Registro en la Biblioteca Digital 
961 |a paper_01698095_v190_n_p43_Hobouchian  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75865