Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.)

Key message: By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Abstract: Drought is one of the most important environm...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Moschen, S.
Otros Autores: Di Rienzo, J.A, Higgins, J., Tohge, T., Watanabe, M., González, S., Rivarola, M., García-García, F., Dopazo, J., Hopp, H.E, Hoefgen, R., Fernie, A.R, Paniego, N., Fernández, P., Heinz, R.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Netherlands 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 31928caa a22021257a 4500
001 PAPER-14909
003 AR-BaUEN
005 20230518204531.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85021128768 
024 7 |2 cas  |a chlorophyll, 1406-65-1, 15611-43-5; water, 7732-18-5; Chlorophyll; Plant Proteins; RNA, Plant; Transcription Factors; Water 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PMBID 
100 1 |a Moschen, S. 
245 1 0 |a Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.) 
260 |b Springer Netherlands  |c 2017 
270 1 0 |m Heinz, R.A.; Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología AgropecuariaArgentina; email: heinz.ruth@inta.gob.ar 
506 |2 openaire  |e Política editorial 
504 |a Aguirrezábal, L., Orioli, G., Hernández, L.F., Pereyra, V., Miravé, J., (1996) Girasol: Aspectos fisiológicos que determinan el rendimiento, , Balcarce, Argentina 
504 |a Allison, L.A., The role of sigma factors in plastid transcription (2000) Biochimie, 82, pp. 537-548. , COI: 1:CAS:528:DC%2BD3cXmtVeru70%3D, PID: 10946105 
504 |a Alonso, R., Salavert, F., Garcia-Garcia, F., Carbonell-Caballero, J., Bleda, M., Garcia-Alonso, L., Sanchis-Juan, A., Dopazo, J., Babelomics 5.0: functional interpretation for new generations of genomic data (2015) Nucleic Acids Res, 43, pp. W117-W121. , COI: 1:CAS:528:DC%2BC2sXhtVymtb3K, PID: 25897133 
504 |a Alpert, P., Simms, E.L., The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? (2002) Evol Ecol, 16, pp. 285-297 
504 |a Amtmann, A., Blatt, M.R., Regulation of macronutrient transport (2009) New Phytol, 181, pp. 35-52. , COI: 1:CAS:528:DC%2BD1MXhtlaktrc%3D, PID: 19076716 
504 |a Andrade, F.H., Gardiol, J.M., Sequía y producción de los cultivos de maíz, girasol y soja. Boletín técnico 132 (1994) EEA INTA Balcarce 
504 |a Andrianasolo, F., Casadebaig, P., Langlade, N., Debaeke, P., Maury, P., Effects of plant growth stage and leaf aging on the response of transpiration and photosynthesis to water deficit in sunflower (2016) Funct Plant Biol, 43, p. 797. , COI: 1:CAS:528:DC%2BC28Xht1SitrnK 
504 |a Ariel, F.D., Manavella, P., Dezar, C., Chan, R.L., The true story of the HD-Zip family (2007) Trends Plant Sci, 12, pp. 419-426. , COI: 1:CAS:528:DC%2BD2sXhtVWmur7I, PID: 17698401 
504 |a Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Sherlock, G., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium (2000) Nat Genet, 25, pp. 25-29. , COI: 1:CAS:528:DC%2BD3cXjtFSlsbc%3D, PID: 10802651 
504 |a Ashraf, M., Foolad, M.R., Roles of glycine betaine and proline in improving plant abiotic stress resistance (2007) Environ Exp Bot, 59, pp. 206-216. , COI: 1:CAS:528:DC%2BD28Xht1Cqtb%2FF 
504 |a Ben Rejeb, K., Lefebvre-De Vos, D., Le Disquet, I., Leprince, A.-S., Bordenave, M., Maldiney, R., Jdey, A., Savouré, A., Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana (2015) New Phytol, 208, pp. 1138-1148. , COI: 1:CAS:528:DC%2BC2MXhvVWqs7bN, PID: 26180024 
504 |a Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing (1995) J R Stat Soc B, 57, pp. 289-300 
504 |a Borsani, O., Díaz, P., Monza, J., Proline is involved in water stress responses of lotus corniculatus nitrogen fixing and nitrate fed plants (1999) J Plant Physiol, 155, pp. 269-273. , COI: 1:CAS:528:DyaK1MXltV2nsLw%3D 
504 |a Cabello, J.V., Arce, A.L., Chan, R.L., The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins (2012) Plant J, 69, pp. 141-153. , COI: 1:CAS:528:DC%2BC38XhtFWnt7k%3D, PID: 21899607 
504 |a Cabello, J.V., Giacomelli, J.I., Piattoni, C.V., Iglesias, A.A., Chan, R.L., The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants (2016) J Biotechnol, 222, pp. 73-83. , COI: 1:CAS:528:DC%2BC28Xis1Giurc%3D, PID: 26876611 
504 |a Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Marè, C., Stanca, A.M., Drought tolerance improvement in crop plants: an integrated view from breeding to genomics (2008) Field Crop Res, 105, pp. 1-14 
504 |a Cellier, F., Conejero, G., Breitler, J.C., Casse, F., Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Accumulation of dehydrin transcripts correlates with tolerance (1998) Plant Physiol, 116, pp. 319-328. , COI: 1:CAS:528:DyaK1cXkslGjtw%3D%3D, PID: 9499218 
504 |a Chaves, M.M., Flexas, J., Pinheiro, C., Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell (2009) Ann Bot, 103, pp. 551-560. , COI: 1:CAS:528:DC%2BD1MXktVGnu7s%3D, PID: 18662937 
504 |a Chi, W., He, B., Mao, J., Jiang, J., Zhang, L., Plastid sigma factors: their individual functions and regulation in transcription (2015) Biochim Biophys Acta, 1847, pp. 770-778. , COI: 1:CAS:528:DC%2BC2MXht1KqtL0%3D, PID: 25596450 
504 |a Chimenti, C.A., Marcantonio, M., Hall, A.J., Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases (2006) F Crop Res, 95, pp. 305-315 
504 |a Ciríaco da Silva, E., Mansur Custódio Nogueira, R.J., Almeida da Silva, M., Bandeira de Albuquerque, M., Drought stress and plant nutrition (2011) Plant Stress, 5, pp. 32-41 
504 |a Connor, D.J., Jones, T.R., Response of sunflower to strategies of irrigation II. Morphological and physiological responses to water stress (1985) Field Crop Res, 12, pp. 91-103 
504 |a Connor, D.J., Palta, J.A., Jones, T.R., Response of sunflower to strategies of irrigation. III. Crop photosynthesis and transpiration (1985) Field Crop Res, 12, pp. 281-283 
504 |a Corti Monzón, G., Pinedo, M., Di Rienzo, J., Novo-Uzal, E., Pomar, F., Lamattina, L., de la Canal, L., Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses (2014) Nitric Oxide, 39, pp. 20-28. , PID: 24747108 
504 |a Couso, L.L., Fernández, R.J., Phenotypic plasticity as an index of drought tolerance in three Patagonian steppe grasses (2012) Ann Bot, 110, pp. 849-857. , COI: 1:STN:280:DC%2BC38jovFGltg%3D%3D, PID: 22782237 
504 |a Cramer, G.R., Ergül, A., Grimplet, J., Tillett, R.L., Tattersall, E.A.R., Bohlman, M.C., Vincent, D., Cushman, J.C., Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles (2007) Funct Integr Genom, 7, pp. 111-134. , COI: 1:CAS:528:DC%2BD2sXitVGqur0%3D 
504 |a DaMatta, F.M., Loos, R.A., Silva, E.A., Loureiro, M.E., Ducatti, C., Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora Pierre (2002) Trees, 16, pp. 555-558. , COI: 1:CAS:528:DC%2BD38XnvVSgsbw%3D 
504 |a De Witt, T., Sih, A., Wilson, D., Costs and limits of phenotypic plasticity (1998) Trends Ecol Evol, 13, pp. 77-81 
504 |a Dezar, C.A., Fedrigo, G.V., Chan, R.L., The promoter of the sunflower HD-Zip protein gene Hahb4 directs tissue-specific expression and is inducible by water stress, high salt concentrations and ABA (2005) Plant Sci, 169, pp. 447-456. , COI: 1:CAS:528:DC%2BD2MXlvFaltrk%3D 
504 |a Dezar, C.A., Gago, G.M., Gonzalez, D.H., Chan, R.L., Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants (2005) Transgenic Res, 14, pp. 429-440. , COI: 1:CAS:528:DC%2BD2MXmvVWqtb4%3D, PID: 16201409 
504 |a Díaz, P., Betti, M., García-Calderón, M., Pérez-Delgado, C.M., Signorelli, S., Borsani, O., Márquez, A.J., Monza, J., Amino acids and drought stress in lotus: use of transcriptomics and plastidic glutamine synthetase mutants for new insights in proline metabolism (2014) Plant adaptation to environmental change: significance of amino acids and their derivatives, , Anjum NA, Gill SS, Gill R, (eds), CABI International, Boston 
504 |a Dubois, M., Gilles, K., Hamilton, J., Rebus, P., Smith, F., Colorimetric method for the determination of sugars and related substances (1956) Anal Chem, 28, pp. 350-356. , COI: 1:CAS:528:DyaG28XjvFynsg%3D%3D 
504 |a Dumas, A., (1826) Annales de chimie, 33, p. 342 
504 |a El-Maarouf-Bouteau, H., Sajjad, Y., Bazin, J., Langlade, N., Cristescu, S.M., Balzergue, S., Baudouin, E., Bailly, C., Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination (2015) Plant Cell Environ, 38, pp. 364-374. , COI: 1:CAS:528:DC%2BC2MXhsVWqs7g%3D, PID: 24811898 
504 |a Farooq, M., Hussain, M., Wahid, A., Siddique, K.H.M., Aroca, R., Drought Stress in plants: an overview (2012) Plant responses to drought stress—from morphological to molecular features, pp. 1-33. , Springer, Berlin 
504 |a Fernandez, P., Rienzo, D., Fernandez, L., Hopp, H.E., Paniego, N., Heinz, R.A., Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis (2008) BMC Plant Biol, 8, pp. 1-18 
504 |a Fernandez, P., Di Rienzo, J.A., Moschen, S., Dosio, G.A., Aguirrezabal, L.A., Hopp, H.E., Paniego, N., Heinz, R.A., Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis (2011) Plant Cell Rep, 30, pp. 63-74. , COI: 1:CAS:528:DC%2BC3MXmvFSm, PID: 21076836 
504 |a Fernandez, P., Soria, M., Blesa, D., DiRienzo, J., Moschen, S., Rivarola, M., Clavijo, B.J., Paniego, N., Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray (2012) PLoS ONE, 7, pp. 1-11 
504 |a Gago, G.M., Almoguera, C., Jordano, J., Gonzalez, D.H., Chan, R.L., Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower (2002) Plant Cell Environ, 25, pp. 633-640. , COI: 1:CAS:528:DC%2BD38XktlertLw%3D 
504 |a Gershenzon, J., Dudareva, N., The function of terpene natural products in the natural world (2007) Nat Chem Biol, 3, pp. 408-414. , COI: 1:CAS:528:DC%2BD2sXms1SrsLc%3D, PID: 17576428 
504 |a Giordani, T., Natali, L., D’Ercole, A., Pugliesi, C., Fambrini, M., Vernieri, P., Vitagliano, C., Cavallini, A., Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.) (1999) Plant Mol Biol, 39, pp. 739-748. , COI: 1:CAS:528:DyaK1MXjtFSqs70%3D, PID: 10350088 
504 |a Hanson, A.D., Scott, N.A., Betaine synthesis from radioactive precursors in attached, water-stressed barley leaves (1980) Plant Physiol, 66, pp. 342-348. , COI: 1:CAS:528:DyaL3cXlsVKnsrY%3D, PID: 16661434 
504 |a Huang, L., Ye, Z., Bell, R.W., Dell, B., Boron nutrition and chilling tolerance of warm climate crop species (2005) Ann Bot, 96, pp. 755-767. , COI: 1:CAS:528:DC%2BD2MXhtFOjsLbN, PID: 16033777 
504 |a Inskeep, W.P., Bloom, P.R., Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone (1985) Plant Physiol, 77, pp. 483-485. , COI: 1:CAS:528:DyaL2MXht12jtrc%3D, PID: 16664080 
504 |a Jahantigh, O., Najafi, F., Badi, H.N., Khavari-Nejad, R.A., Sanjarian, F., Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress (2016) Acta Biol Hung, 67, pp. 195-204. , COI: 1:CAS:528:DC%2BC2sXntlCitL4%3D, PID: 27165530 
504 |a Kiani, S.P., Talia, P., Maury, P., Grieu, P., Heinz, R., Perrault, A., Nishinakamasu, V., Sarrafi, A., Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments (2007) Plant Sci, 172, pp. 773-787. , COI: 1:CAS:528:DC%2BD2sXisVSqurk%3D 
504 |a Kiani, S.P., Grieu, P., Maury, P., Hewezi, T., Gentzbittel, L., Sarrafi, A., Kiani, P.S., Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.) (2007) Theor Appl Genet, 114, pp. 193-207. , COI: 1:CAS:528:DC%2BD28XhtlWntb3E 
504 |a Kiniry, J.R., Blanchet, R., Williams, J.R., Texier, V., Jones, K., Cabelguenne, M., Sunflower simulation using the EPIC and ALMANAC models (1992) Field Crop Res, 30, pp. 403-423 
504 |a Kratsch, H.A., Wise, R.R., The ultrastructure of chilling stress (2000) Plant Cell Environ, 23, pp. 337-350. , COI: 1:CAS:528:DC%2BD3cXjsFCktLo%3D 
504 |a Langfelder, P., Horvath, S., WGCNA: an R package for weighted correlation network analysis (2008) BMC Bioinformatics, 9, p. 559. , PID: 19114008 
504 |a Lohse, M., Nagel, A., Herter, T., May, P., Schroda, M., Zrenner, R., Tohge, T., Usadel, B., Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data (2014) Plant Cell Environ, 37, pp. 1250-1258. , COI: 1:CAS:528:DC%2BC2cXlvFSktr8%3D, PID: 24237261 
504 |a Luedemann, A., Strassburg, K., Erban, A., Kopka, J., TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC-MS)-based metabolite profiling experiments (2008) Bioinformatics, 24, pp. 732-737. , COI: 1:CAS:528:DC%2BD1cXislKltL0%3D, PID: 18204057 
504 |a Maas, E.V., Hoffman, G.J., Crop salt tolerance, current assessment (1977) J Irrig Drain Div ASCE, 103, pp. 115-134 
504 |a Mahouachi, J., Socorro, A.R., Talon, M., Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance (2006) Plant Soil, 281, pp. 137-146. , COI: 1:CAS:528:DC%2BD28Xktlyhsb8%3D 
504 |a Manavella, P.A., Arce, A.L., Dezar, C.A., Bitton, F., Renou, J.-P.P., Crespi, M., Chan, R.L., Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor (2006) Plant J, 48, pp. 125-137. , COI: 1:CAS:528:DC%2BD28XhtFalsb7M, PID: 16972869 
504 |a Manavella, P.A., Dezar, C.A., Bonaventure, G., Baldwin, I.T., Chan, R.L., HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses (2008) Plant J, 56, pp. 376-388. , COI: 1:CAS:528:DC%2BD1cXhsVGmtbrJ, PID: 18643970 
504 |a Manavella, P.A., Dezar, C., Ariel, F.D., Drincovich, M.F., Chan, R.L., The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes (2008) J Exp Bot, 59, pp. 3143-3155. , COI: 1:CAS:528:DC%2BD1cXpslalsLg%3D, PID: 18603614 
504 |a Masclaux-Daubresse, C., Valadier, M.-H., Carrayol, E., Reisdorf-Cren, M., Hirel, B., Diurnal changes in the expressionof glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves (2002) Plant Cell Environ, 25, pp. 1451-1462. , COI: 1:CAS:528:DC%2BD38XovFWhtbo%3D 
504 |a Mir, R.R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R., Varshney, R.K., Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops (2012) Theor Appl Genet, 125, pp. 625-645. , COI: 1:CAS:528:DC%2BC38XhtFWhsLjF, PID: 22696006 
504 |a Montaner, D., Dopazo, J., Multidimensional gene set analysis of genomic data (2010) PLoS ONE, 5. , PID: 20436964 
504 |a Moschen, S., Bengoa Luoni, S., Paniego, N.B., Hopp, H.E., Dosio, G.A.A., Fernandez, P., Heinz, R.A., Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.) (2014) PLoS ONE, 9. , PID: 25110882 
504 |a Moschen, S., Radonic, L.M., Ehrenbolger, G.F., Fernández, P., Lía, V., Paniego, N.B., López Bilbao, M., Arribas, J.I., Functional genomics and transgenesis applied to sunflower breeding (2014) Sunflowers: growth and development, environmental influences and pests/diseases, pp. 131-164. , Nova Science Publishers, Hauppauge 
504 |a Moschen, S., Bengoa Luoni, S., Di Rienzo, J., Caro, M., Tohge, T., Watanabe, M., Hollmann, J., Heinz, R., Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower (2016) Plant Biotechnol J, 14, pp. 719-734. , COI: 1:CAS:528:DC%2BC28XitVSlu7s%3D, PID: 26132509 
504 |a Moschen, S., Higgins, J., Di Rienzo, J.A., Heinz, R.A., Paniego, N., Fernandez, P., Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower (2016) BMC Bioinformatics, 17, p. 174. , PID: 27295368 
504 |a Nagashima, A., Hanaoka, M., Shikanai, T., Fujiwara, M., Kanamaru, K., Takahashi, H., Tanaka, K., The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana (2004) Plant Cell Physiol, 45, pp. 357-368. , COI: 1:CAS:528:DC%2BD2cXjsFKhtL8%3D, PID: 15111710 
504 |a Nakabayashi, R., Mori, T., Saito, K., (2014) Plant Signal Behav, 9 
504 |a Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Saito, K., Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids (2014) Plant J, 77, pp. 367-379. , COI: 1:CAS:528:DC%2BC2cXht1eht78%3D, PID: 24274116 
504 |a Ouvrard, O., Cellier, F., Ferrare, K., Tousch, D., Lamaze, T., Dupuis, J.M., Casse-Delbart, F., Identification and expression of water stress- and abscisic acid-regulated genes in a drought-tolerant sunflower genotype (1996) Plant Mol Biol, 31, pp. 819-829. , COI: 1:CAS:528:DyaK28XlslCktbo%3D, PID: 8806412 
504 |a Palmer-Young, E.C., Veit, D., Gershenzon, J., Schuman, M.C., The sesquiterpenes(E)-ß-farnesene and (E)-α-bergamotene quench ozone but fail to protect the wild tobacco Nicotiana attenuata from ozone, UVB, and drought stresses (2015) PLoS ONE, 10. , PID: 26030663 
504 |a Peluffo, L., Lia, V., Troglia, C., Maringolo, C., Norma, P., Escande, A., Esteban Hopp, H., Carrari, F., Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection (2010) Phytochemistry, 71, pp. 70-80. , COI: 1:CAS:528:DC%2BD1MXhsFyks7zF, PID: 19853265 
504 |a Pereyra-Irujo, G.A., Velázquez, L., Granier, C., Aguirrezábal, L.A.N., A method for drought tolerance screening in sunflower (2007) Plant Breed, 126, pp. 445-448 
504 |a Pérez-Rodríguez, P., Riaño-Pachón, D.M., Corrêa, L.G.G., Rensing, S.A., Kersten, B., Mueller-Roeber, B., PlnTFDB: updated content and new features of the plant transcription factor database (2010) Nucleic Acids Res, 38, pp. D822-D827. , PID: 19858103 
504 |a DebRoy S (2012) Sarkar D, , Pinheiro J, Bates Dnlme: linear and nonlinear mixed effects models. R package 
504 |a Planchet, E., Verdu, I., Delahaie, J., Cukier, C., Girard, C., Morère-Le Paven, M.-C., Limami, A.M., Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula (2014) J Exp Bot, 65, pp. 2161-2170. , COI: 1:CAS:528:DC%2BC2cXmsVGktb0%3D, PID: 24604737 
504 |a R: a language and environment for statistical computing (2012) R Foundation for Statistical Computing 
504 |a Raineri, J., Ribichich, K.F., Chan, R.L., The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty (2015) Plant Cell Rep, 34, pp. 2065-2080. , COI: 1:CAS:528:DC%2BC2MXht12mt77I, PID: 26245532 
504 |a Roche, J., Hewezi, T., Bouniols, A., Gentzbittel, L., Transcriptional profiles of primary metabolism and signal transduction-related genes in response to water stress in field-grown sunflower genotypes using a thematic cDNA microarray (2007) Planta, 226, pp. 601-617. , COI: 1:CAS:528:DC%2BD2sXnsVeqtbg%3D, PID: 17370086 
504 |a Roessner-Tunali, U., Hegemann, B., Lytovchenko, A., Carrari, F., Bruedigam, C., Granot, D., Fernie, A.R., Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development (2003) Plant Physiol, 133, pp. 84-99. , COI: 1:CAS:528:DC%2BD3sXntlaitLw%3D, PID: 12970477 
504 |a Rousseaux, M.C.C., Hall, A.J., Sanchez, R.A., Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower (1996) Physiol Plant, 96, pp. 217-224. , COI: 1:CAS:528:DyaK28XivFeksbc%3D 
504 |a Rozen, S., Skaletsky, H.J., Primer3 on the WWW for general users and for biologist programmers (2000) Bioinform Methods Protoc, 132, pp. 365-386. , COI: 1:CAS:528:DyaK1MXmslKqsbo%3D 
504 |a Ruiz-Lozano, J.M., Azcón, R., Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants (1996) Agric Ecosyst Environ, 60, pp. 175-181. , COI: 1:CAS:528:DyaK28XntlKksrs%3D 
504 |a Sadras, V.O., Whitfi eld, D.M., Connor, D.J., Regulation of evapotranspiration and its partitioning between transpiration and soil evaporation by sunflower crops. A comparison between hybrids of different stature (1991) Field Crop Res, 28, pp. 17-37 
504 |a Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T., Fernie, A.R., The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity (2013) Plant Physiol Biochem, 72, pp. 21-34. , COI: 1:CAS:528:DC%2BC3sXjsFyhtrw%3D, PID: 23473981 
504 |a Sartor, M.A., Leikauf, G.D., Medvedovic, M., LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data (2009) Bioinformatics, 25, pp. 211-217. , COI: 1:CAS:528:DC%2BD1MXntFWhsg%3D%3D, PID: 19038984 
504 |a Schaefer, R.J., Michno, J.-M., Myers, C.L., Unraveling gene function in agricultural species using gene co-expression networks (2016) Biochim Biophys Acta-Gene Regul Mech 
504 |a Schmidhuber, J., Tubiello, F.N., Global food security under climate change (2007) Proc Natl Acad Sci USA, 104, pp. 19703-19708. , COI: 1:CAS:528:DC%2BD1cXitFSltA%3D%3D, PID: 18077404 
504 |a Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks (2003) Genome Res, 13, pp. 2498-2504. , COI: 1:CAS:528:DC%2BD3sXovFWrtr4%3D, PID: 14597658 
504 |a Sharkey, T.D., Isoprene increases thermotolerance of fosmidomycin-fed leaves (2001) Plant Physiol, 125, pp. 2001-2006. , COI: 1:CAS:528:DC%2BD3MXjtFKqurs%3D, PID: 11299379 
504 |a Sharkey, T.D., Wiberley, A.E., Donohue, A.R., Isoprene emission from plants: why and how (2008) Ann Bot, 101, pp. 5-18. , COI: 1:CAS:528:DC%2BD1cXitlansrg%3D, PID: 17921528 
504 |a Skopelitis, D.S., Paranychianakis, N.V., Paschalidis, K.A., Pliakonis, E.D., Delis, I.D., Yakoumakis, D.I., Kouvarakis, A., Roubelakis-Angelakis, K.A., Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine (2006) Plant Cell, 18, pp. 2767-2781 
504 |a Smyth, G., Limma: linear models for microarray data (2005) Bioinformatics and computational biology solutions using R and bioconductor, pp. 397-420 
504 |a Sperdouli, I., Moustakas, M., Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress (2012) J Plant Physiol, 169, pp. 577-585. , COI: 1:CAS:528:DC%2BC38XhvVGntrY%3D, PID: 22305050 
504 |a Tardieu, F., Tuberosa, R., Dissection and modelling of abiotic stress tolerance in plants (2010) Curr Opin Plant Biol, 13, pp. 206-212. , PID: 20097596 
504 |a Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Müller, L., MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes (2004) Plant J, 37, pp. 914-939. , COI: 1:CAS:528:DC%2BD2cXjtFChu78%3D, PID: 14996223 
504 |a Thomas, W.T.B., Drought-resistant cereals: impact on water sustainability and nutritional quality (2015) Proc Nutr Soc, 74, pp. 191-197. , COI: 1:STN:280:DC%2BC2MrnsFahsA%3D%3D, PID: 25702698 
504 |a Tran, L.-S.P., Nakashima, K., Sakuma, Y., Osakabe, Y., Qin, F., Simpson, S.D., Maruyama, K., Yamaguchi-Shinozaki, K., Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis (2006) Plant J, 49, pp. 46-63 
504 |a Utrillas, M.J., Alegre, L., Simon, E., Seasonal changes in production and nutrient content of Cynodon dactylon (L.) Pers. subjected to water deficits (1995) Plant Soil, 175, pp. 153-157. , COI: 1:CAS:528:DyaK2MXot1Kgsrw%3D 
504 |a van Kleunen, M., Fischer, M., Constraints on the evolution of adaptive phenotypic plasticity in plants (2005) New Phytol, 166, pp. 49-60. , PID: 15760350 
504 |a Vickers, C.E., Gershenzon, J., Lerdau, M.T., Loreto, F., A unified mechanism of action for volatile isoprenoids in plant abiotic stress (2009) Nat Chem Biol, 5, pp. 283-291. , COI: 1:CAS:528:DC%2BD1MXks12ksbg%3D, PID: 19377454 
504 |a Wang, W., Wu, P., Li, Y., Hou, X., Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage (2016) Mol Genet Genom, 291, pp. 1451-1464. , COI: 1:CAS:528:DC%2BC2MXhslyksLvM 
504 |a Yaish, M.W., Proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.) (2015) Genet Mol Res, 14, pp. 9943-9950. , COI: 1:CAS:528:DC%2BC28XpsV2it7w%3D, PID: 26345930 
504 |a Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y., Effects of free proline accumulation in petunias under drought stress (2005) J Exp Bot, 56, pp. 1975-1981. , COI: 1:CAS:528:DC%2BD2MXpvFKntbg%3D, PID: 15928013 
520 3 |a Key message: By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Abstract: Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability. © 2017, Springer Science+Business Media B.V.  |l eng 
593 |a Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina 
593 |a Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom 
593 |a Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany 
593 |a Computational Genomics Department, Centro de Investigación Príncipe Felipe. Functional Genomics Node (INB-ELIXIR-es). Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, 46012, Spain 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina 
690 1 0 |a DATA INTEGRATION 
690 1 0 |a DROUGHT 
690 1 0 |a HELIANTHUS ANNUUS L 
690 1 0 |a METABOLOMICS 
690 1 0 |a SUNFLOWER 
690 1 0 |a TRANSCRIPTOMICS 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a PLANT PROTEIN 
690 1 0 |a PLANT RNA 
690 1 0 |a TRANSCRIPTION FACTOR 
690 1 0 |a WATER 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENETICS 
690 1 0 |a METABOLISM 
690 1 0 |a PHYSIOLOGICAL STRESS 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a PLANT LEAF 
690 1 0 |a PROTEIN MICROARRAY 
690 1 0 |a SUNFLOWER 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a GENE EXPRESSION REGULATION, PLANT 
690 1 0 |a HELIANTHUS 
690 1 0 |a PLANT LEAVES 
690 1 0 |a PLANT PROTEINS 
690 1 0 |a PROTEIN ARRAY ANALYSIS 
690 1 0 |a RNA, PLANT 
690 1 0 |a STRESS, PHYSIOLOGICAL 
690 1 0 |a TRANSCRIPTION FACTORS 
690 1 0 |a WATER 
700 1 |a Di Rienzo, J.A. 
700 1 |a Higgins, J. 
700 1 |a Tohge, T. 
700 1 |a Watanabe, M. 
700 1 |a González, S. 
700 1 |a Rivarola, M. 
700 1 |a García-García, F. 
700 1 |a Dopazo, J. 
700 1 |a Hopp, H.E. 
700 1 |a Hoefgen, R. 
700 1 |a Fernie, A.R. 
700 1 |a Paniego, N. 
700 1 |a Fernández, P. 
700 1 |a Heinz, R.A. 
773 0 |d Springer Netherlands, 2017  |g v. 94  |h pp. 549-564  |k n. 4-5  |p Plant. Mol. Biol.  |x 01674412  |w (AR-BaUEN)CENRE-3503  |t Plant Molecular Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021128768&doi=10.1007%2fs11103-017-0625-5&partnerID=40&md5=443423ccb5cabe38cd535c8d1f918aa5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11103-017-0625-5  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01674412_v94_n4-5_p549_Moschen  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01674412_v94_n4-5_p549_Moschen  |y Registro en la Biblioteca Digital 
961 |a paper_01674412_v94_n4-5_p549_Moschen  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75862