High molecular weight components containing N-linked oligosaccharides of Ascaris suum extract inhibit the dendritic cells activation through DC-SIGN and MR

Helminths, as well as their secretory/excretory products, induce a tolerogenic immune microenvironment. High molecular weight components (PI) from Ascaris suum extract down-modulate the immune response against ovalbumin (OVA). The PI exerts direct effect on dendritic cells (DCs) independent of TLR 2...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Favoretto, B.C
Otros Autores: Casabuono, A.A.C, Portes-Junior, J.A, Jacysyn, J.F, Couto, A.S, Faquim-Mauro, E.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18107caa a22018857a 4500
001 PAPER-14892
003 AR-BaUEN
005 20230518204529.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85017214144 
024 7 |2 cas  |a Freund adjuvant, 9007-81-2; mannan, 51395-96-1, 9036-88-8; ovalbumin, 77466-29-6; phosphorylcholine, 107-73-3; Lectins, C-Type; Mannans; Oligosaccharides; Ovalbumin; Phosphorylcholine 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IMCHA 
100 1 |a Favoretto, B.C. 
245 1 0 |a High molecular weight components containing N-linked oligosaccharides of Ascaris suum extract inhibit the dendritic cells activation through DC-SIGN and MR 
260 |b Elsevier Ltd  |c 2017 
270 1 0 |m Faquim-Mauro, E.L.; Laboratory of Immunopathology-Butantan Institute, Av. Vital Brazil, 1500, Butantã, CEP 05503-900, Brazil; email: eliana.faquim@butantan.gov.br 
506 |2 openaire  |e Política editorial 
504 |a Alves, M.J., Abuin, G., Kuwajima, V.Y., Colli, W., Partial inhibition of trypomastigote entry into cultured mammalian cells by monoclonal antibodies against a surface glycoprotein of Trypanosoma cruzi (1986) Mol. Biochem. Parasitol., 21, pp. 75-82 
504 |a Baldo, C., Jamora, C., Yamanouye, N., Zorn, T.M., Moura-da-Silva, A.M., Mechanisms of vascular damage by hemorrhagic snake venom metalloproteinases: tissue distribution and in situ hydrolysis (2010) PLoS Negl. Trop. Dis., 6, p. e727 
504 |a Brattig, N.W., Bazzocchi, C., Kirschning, C.J., Reiling, N., Büttner, D.W., Ceciliani, F., The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4 (2004) J. Immunol., 173, pp. 437-445 
504 |a Burgdorf, S., Kautz, A., Böhnert, V., Knolle, P.A., Kurts, C., Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation (2007) Science, 5824, pp. 612-616 
504 |a Chieppa, M., Bianchi, G., Doni, A., Del Prete, A., Sironi, M., Laskarin, G., Monti, P., Allavena, P., Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program (2003) J. Immunol., 171, pp. 4552-4560 
504 |a Den Dunnen, J., Gringhuis, S.I., Geijtenbeek, T.B., Innate signaling by the C-type lectin DC-SIGN dictates immune responses (2009) Cancer Immunol. Immunother., 58, pp. 1149-1157 
504 |a Du, L., Liu, L., Yu, Y., Shan, H., Li, L., Trichinella spiralis excretory-secretory products protect against polymicrobial sepsis by suppressing MyD88 via mannose receptor (2014) BioMed Res. Int., 2014, p. 898646 
504 |a Duschak, V.G., Couto, A.S., Cruzipain, the major cysteine protease of Trypanosoma cruzi: A sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target (2009) Curr. Med. Chem., 16, pp. 3174-3202 
504 |a Engering, A., Van Vliet, S.J., Geijtenbeek, T.B., Van Kooyk, Y., Subset of DC-SIGN(+) dendritic cells in human blood transmits HIV-1 to T lymphocytes (2002) Blood, 100, pp. 1780-1786 
504 |a Erdmann, H., Steeg, C., Koch-Nolte, F., Fleischer, B., Jacobs, T., Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E) (2009) Cell. Microbiol., 11, pp. 1600-1611 
504 |a Everts, B., Hussaarts, L., Driessen, N.N., Meevissen, M.H., Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor (2012) J. Exp. Med., 209 (10), pp. 1753-1767. , (S1) 
504 |a Faquim-Mauro, E.L., Macedo, M.S., The immunosuppressive activity of Ascaris suum is due to high molecular weight components (1998) Clin. Exp. Immunol., 114, pp. 245-251 
504 |a Favoretto, B.C., Silva, S.R., Jacysyn, J.F., Câmara, N.O., Faquim-Mauro, E.L., TLR2- and 4-independent immunomodulatory effect of high molecular weight components from Ascaris suum (2014) Mol. Immunol., 58, pp. 17-26 
504 |a Favoretto, B.C., Evaluation of Participation of Receptors Toll like Receptors and C Type Lectins Receptors in Suppressing The Immune Response Induced by High Molecular Weight Components of Ascaris suum Extract. 78 f. Thesis (MA) (2010), Institute of Biomedical Sciences, University of São Paulo São Paulo; Ferreira, A.P., Faquim, E.S., Abrahamsohn, I.A., Macedo, M.S., Immunization with Ascaris suum extract impairs T cell functions in mice (1995) Cell. Immunol., 162, pp. 202-210 
504 |a Finkelman, F.D., Pearce, E.J., Urban, J.F., Jr., Sher, A., Regulation and biological function of helminth-induced cytokine responses (1991) Immunol. Today, 12, pp. 62-66 
504 |a Gause, W.C., Ekkens, M., Nguyen, D., Mitro, V., Liu, Q., Finkelman, F.D., Greenwald, R.J., Urban, J.F., The development of CD4+ T effector cells during the type 2 immune response (1999) Immunol. Res., 20, pp. 55-65 
504 |a Geijtenbeek, T.B.H., Gringhuis, S.I., Signalling through C-type lectin receptors: shaping immune responses (2009) Nat. Rev. Immunol., 9, pp. 465-479 
504 |a Geijtenbeek, T.B., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Middel, J., DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells (2000) Cell, 100, pp. 587-597 
504 |a Geijtenbeek, T.B., Van Vliet, S.J., Koppel, E.A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C.M., Appelmelk, B., Van Kooyk, Y., Mycobacteria target DC-SIGN to suppress dendritic cell function (2003) J. Exp. Medicine, 197, pp. 7-17 
504 |a Geijtenbeek, T.B., van Vliet, S.J., Engering, A., Hart, B.A., van Kooyk, Y., Self- and nonself-recognition by C-type lectins on dendritic cells (2004) Annu. Rev. Immunol., 22, pp. 33-54 
504 |a Gringhuis, S.I., C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB (2007) Immunity, 5, pp. 605-616 
504 |a Haig, D.M., Lima, G.C., Mota, I., Antibody suppression in mice infected with Nippostrongylus brasiliensis (1980) Parasite Immunol. Autumn., 2 (3), pp. 175-187 
504 |a Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houlès, C., Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection (2002) Immunity, 17, pp. 653-664 
504 |a Hamilton, C.M., Dowling, D.J., Loscher, C.E., Morphew, R.M., Brophy, P.M., O'Neill, S.M., The Fasciola hepatica tegumental antigen suppresses dendritic cell maturation and function (2009) Infect. Immun., 6, pp. 2488-2498 
504 |a Harnett, W., Rzepecka, J., Houston, K.M., How do nematodes transfer phosphorylcholine to carbohydrates? (2010) Trends Parasitol., 26, pp. 114-118 
504 |a Hubo, M., Trinschek, B., Kryczanowsky, F., Tuettenberg, A., Steinbrink, K., Jonuleit, H., Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells (2013) Front. Immunol., 82, pp. 1-14 
504 |a Jang-Lee, J., Curwen, R.S., Ashton, P.D., Tissot, B., Mathieson, W., Panico, M., Glycomics analysis of Schistosoma mansoni egg and cercarial secretions (2007) Mol. Cell Proteomics, 6, pp. 1485-1499 
504 |a Klaver, E.J., Kuijk, L.M., Laan, L.C., Kringel, H., van Vliet, S.J., Bouma, G., Trichuris suis-induced modulation of human dendritic cell function is glycan-mediated (2013) Int. J. Parasitol., 43, pp. 191-200 
504 |a Maizels, R.M., Yazdanbakhsh, M., Immune regulation by helminth parasites: cellular and molecular mechanisms (2003) Nat. Rev. Immunol., 9, pp. 733-744 
504 |a McGuirk, P., McCann, C., Mills, K.H., Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis (2002) J. Exp. Med., 2, pp. 221-231 
504 |a Moll, H., Dendritic cells and host resistance to infection (2003) Cell. Microbiol., 5, pp. 493-500 
504 |a Morelle, W., Haslam, S.M., Olivier, V., Appleton, J.A., Morris, H.R., Dell, A., Phosphorylcholine-containing N-glycans of Trichinella spiralis: identification of multiantennary lacdiNAc structures (2000) Glycobiology, 9, pp. 941-950 
504 |a Mosmann, T.R., Sad, S., The expanding universe of T-cell subsets: Th1, Th2 and more (1996) Immunol. Today, 17, pp. 138-146 
504 |a Nyame, A.K., Debose-Boyd, R., Long, T.D., Tsang, V.C., Cummings, R.D., Expression of Lex antigen in Schistosoma japonicum and S.haematobium and immune responses to Lex in infected animals: lack of Lex expression in other trematodes and nematodes (1998) Glycobiology, 8, pp. 615-624 
504 |a Pöltl, G., Kerner, D., Paschinger, K., Wilson, I.B., N-glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues (2007) FEBS J., 274, pp. 714-726 
504 |a Piras, M.M., Henríquez, D., Piras, R., The effect of fetuin and other sialoglycoproteins on the in vitro penetration of Trypanosoma cruzi trypomastigotes into fibroblastic cells (1987) Mol. Biochem. Parasitol., 22, pp. 135-143 
504 |a Sallusto, F., Cella, M., Danieli, C., Lanzavecchia, A., Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products (1995) J. Exp. Med., 182, pp. 389-400 
504 |a Schnare, M., Barton, G.M., Holt, A.C., Takeda, K., Akira, S., Medzhitov, R., Toll-like receptors control activation of adaptive immune responses (2001) Nat. Immunol., 2, pp. 947-950 
504 |a Silva, S.R., Jacysyn, J.F., Macedo, M.S., Faquim-Mauro, E.L., Immunosuppressive components of Ascaris suum down-regulate expression of costimulatory molecules and function of antigen-presenting cells via an IL-10-mediated mechanism (2006) J. Immunol., 36, pp. 3227-3237 
504 |a Soares, M.F.M., Mota, I., Macedo, M.S., Isolation of Ascaris suum components which suppress IgE antibody responses (1992) Int. Archs. Allergy Immunol., 97, pp. 37-43 
504 |a Son, Y.I., Egawa, S., Tatsumi, T., Redlinger, R.E., Jr., Kalinski, P., Kanto, T., A novel bulk-culture method for generating mature dendritic cells from mouse bone marrow cells (2002) J. Immunol. Methods, 262, pp. 145-157 
504 |a Sorvillo, N., Pos, W., van den Berg, L.M., Fijnheer, R., Martinez-Pomares, L., Geijtenbeek, T.B., The macrophage mannose receptor promotes uptake of ADAMTS13 by dendritic cells (2012) J. Blood, 119, pp. 3828-3835 
504 |a Svajger, U., Anderluh, M., Jeras, M., Obermajer, N., C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity (2010) Cell. Signal., 10, pp. 1397-1405 
504 |a Takeda, K., Kaisho, T., Akira, S., Toll-like receptors (2003) Annu. Rev. Immunol., 21, pp. 335-376 
504 |a Terrazas, C.A., Sánchez-Muñoz, F., Mejía-Domínguez, A.M., Amezcua-Guerra, L.M., Terrazas, L.I., Cestode antigens induce a tolerogenic-like phenotype and inhibit LPS inflammatory responses in human dendritic cells (2011) Int. J. Biol. Sci., 9, pp. 1391-1400 
504 |a Terrazas, C.A., Alcántara-Hernández, M., Bonifaz, L., Terrazas, L.I., Satoskar, A.R., Helminth-excreted/secreted products are recognized by multiple receptors on DCs to block the TLR response and bias Th2 polarization in a cRAF dependent pathway (2013) FASEB J., 27, pp. 4547-4560 
504 |a Van Die, I., Cummings, R.D., Glycans modulate immune responses in helminth infections and allergy (2006) Chem. Immunol. Allergy, 90, pp. 91-112 
504 |a Van Die, I., Van Stijn, C.M., Geyer, H., Geyer, R., Structural and functional analysis of glycosphingolipids of Schistosoma mansoni (2010) Methods Enzymol., 480, pp. 117-140 
504 |a Van Kooyk, Y., Geijtenbeek, T.B., DC-SIGN: escape mechanism for pathogens (2003) Nat. Rev. Immunol., 3, pp. 697-709 
504 |a Van Liempt, E., van Vliet, S.J., Engering, A., García Vallejo, J.J., Bank, C.M., Sanchez-Hernandez, M., Schistossoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation (2007) Mol. Immunol., 44, pp. 2605-2615 
504 |a Van der Kleij, D., Van Remoortere, A., Schuitemaker, J.H., Kapsenberg, M.L., Deelder, A.M., Tielens, A.G., Triggering of innate immune responses by schistosome egg glycolipids and their carbohydrate epitope GalNAc beta 1-4(Fuc alpha 1-2Fuc alpha 1-3)GlcNAc (2002) J. Infect. Dis., 185, pp. 531-539 
504 |a Varki, A., Essentials of Glycobiology (2009), 2nd ed. Cold Spring Harbor Laboratory Press New York; Varki, A., Sialic acids as ligands in recognition phenomena (1997) FASEB J., 4, pp. 248-255 
520 3 |a Helminths, as well as their secretory/excretory products, induce a tolerogenic immune microenvironment. High molecular weight components (PI) from Ascaris suum extract down-modulate the immune response against ovalbumin (OVA). The PI exerts direct effect on dendritic cells (DCs) independent of TLR 2, 4 and MyD88 molecule and, thus, decreases the T lymphocytes response. Here, we studied the glycoconjugates in PI and the role of C-type lectin receptors (CLRs), DC-SIGN and MR, in the modulation of DCs activity. Our data showed the presence of glycoconjugates with high mannose- and complex-type N-linked oligosaccharide chains and phosphorylcholine residues on PI. In addition, these N-linked glycoconjugates inhibited the DCs maturation induced by LPS. The binding and internalization of PI-Alexa were decreased on DCs previously incubated with mannan, anti-DC-SIGN and/or anti-MR antibodies. In agreement with this, the incubation of DCs with mannan, anti-DC-SIGN and/or anti-MR antibodies abolished the down-modulatory effect of PI on these cells. It was also observed that the blockage of CLRs, DC-SIGN and MR on DCs reverted the inhibitory effect of PI in in vitro T cells proliferation. Therefore, our data show the involvement of DC-SIGN and MR in the recognition and consequent modulatory effect of N-glycosylated components of PI on DCs. © 2017 Elsevier Ltd  |l eng 
593 |a Laboratório de Imunopatologia, Instituto Butantan, São Paulo, SP, Brazil 
593 |a CIHIDECAR-Departmento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a LIM62–Universidade de São Paulo, São Paulo, Brazil 
690 1 0 |a ASCARIS SUUM 
690 1 0 |a C-TYPE LECTIN RECEPTORS 
690 1 0 |a DC-DENDRITIC CELL 
690 1 0 |a DCSIGN-DENDRITIC CELL SPECIFC ICAM-3 GRABBING NON-INTEGRIN 
690 1 0 |a MR-MANNOSE RECEPTOR 
690 1 0 |a PI - HIGH MOLECULAR WEIGHT COMPONENTS FROM ASCARIS SUUM EXTRACT 
690 1 0 |a ASPARAGINE LINKED OLIGOSACCHARIDE 
690 1 0 |a CD209 ANTIGEN 
690 1 0 |a FREUND ADJUVANT 
690 1 0 |a GRANULOCYTE MACROPHAGE COLONY STIMULATING FACTOR 
690 1 0 |a HIGH MOLECULAR WEIGHT COMPONENT 
690 1 0 |a INTERLEUKIN 4 
690 1 0 |a MANNAN 
690 1 0 |a MANNOSE RECEPTOR 
690 1 0 |a NATURAL PRODUCTS AND THEIR SYNTHETIC DERIVATIVES 
690 1 0 |a OVALBUMIN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a LECTIN 
690 1 0 |a OLIGOSACCHARIDE 
690 1 0 |a PHOSPHORYLCHOLINE 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ARTICLE 
690 1 0 |a ASCARIS SUUM 
690 1 0 |a BINDING AFFINITY 
690 1 0 |a BINDING ASSAY 
690 1 0 |a BOUND FRACTION 
690 1 0 |a CANAVALIA ENSIFORMIS 
690 1 0 |a CELL ACTIVATION 
690 1 0 |a CELL SURFACE 
690 1 0 |a CELL SUSPENSION 
690 1 0 |a CONFOCAL MICROSCOPY 
690 1 0 |a DENDRITIC CELL 
690 1 0 |a FLOW CYTOMETRY 
690 1 0 |a IMMUNIZATION 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a INTERNALIZATION 
690 1 0 |a LECTIN BINDING 
690 1 0 |a LYMPHOCYTE PROLIFERATION 
690 1 0 |a MALE 
690 1 0 |a MATRIX ASSISTED LASER DESORPTION IONIZATION TIME OF FLIGHT MASS SPECTROMETRY 
690 1 0 |a MOLECULAR WEIGHT 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN CONTENT 
690 1 0 |a PURIFICATION 
690 1 0 |a RETENTION TIME 
690 1 0 |a T LYMPHOCYTE 
690 1 0 |a ANIMAL 
690 1 0 |a ASCARIS SUUM 
690 1 0 |a BAGG ALBINO MOUSE 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CHEMISTRY 
690 1 0 |a DENDRITIC CELL 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a IMMUNOLOGY 
690 1 0 |a LYMPHOCYTE ACTIVATION 
690 1 0 |a ANIMALS 
690 1 0 |a ASCARIS SUUM 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a DENDRITIC CELLS 
690 1 0 |a LECTINS, C-TYPE 
690 1 0 |a LYMPHOCYTE ACTIVATION 
690 1 0 |a MALE 
690 1 0 |a MANNANS 
690 1 0 |a MICE 
690 1 0 |a MICE, INBRED BALB C 
690 1 0 |a MOLECULAR WEIGHT 
690 1 0 |a OLIGOSACCHARIDES 
690 1 0 |a OVALBUMIN 
690 1 0 |a PHOSPHORYLCHOLINE 
690 1 0 |a T-LYMPHOCYTES 
700 1 |a Casabuono, A.A.C. 
700 1 |a Portes-Junior, J.A. 
700 1 |a Jacysyn, J.F. 
700 1 |a Couto, A.S. 
700 1 |a Faquim-Mauro, E.L. 
773 0 |d Elsevier Ltd, 2017  |g v. 87  |h pp. 33-46  |p Mol. Immunol.  |x 01615890  |w (AR-BaUEN)CENRE-1773  |t Molecular Immunology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017214144&doi=10.1016%2fj.molimm.2017.03.015&partnerID=40&md5=f3ab70dd1ddf999ba497c3002011318e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.molimm.2017.03.015  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01615890_v87_n_p33_Favoretto  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01615890_v87_n_p33_Favoretto  |y Registro en la Biblioteca Digital 
961 |a paper_01615890_v87_n_p33_Favoretto  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75845