Effect of glyphosate acid on biochemical markers of periphyton exposed in outdoor mesocosms in the presence and absence of the mussel Limnoperna fortunei

Glyphosate is currently the most widely used herbicide in agricultural production. It generally enters aquatic ecosystems through surface water runoff and aerial drift. We evaluated the effect of glyphosate acid on biochemical parameters of periphyton exposed to concentrations of 1, 3, and 6 mg/L in...

Descripción completa

Detalles Bibliográficos
Autor principal: Iummato, M.M
Otros Autores: Pizarro, H., Cataldo, D., Di Fiori, E., dos Santos Afonso, M., Ríos de Molina, María el Carmen, Juárez, Ángela Beatriz
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Wiley Blackwell 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19494caa a22022577a 4500
001 PAPER-14872
003 AR-BaUEN
005 20240904172411.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85019655605 
024 7 |2 cas  |a catalase, 9001-05-2; chlorophyll a, 479-61-8; glyphosate, 1071-83-6; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; chlorophyll, 1406-65-1, 15611-43-5; glycine, 56-40-6, 6000-43-7, 6000-44-8; Biomarkers; Carotenoids; Catalase; Chlorophyll; chlorophyll a; Glycine; glyphosate; Herbicides; Pigments, Biological; Superoxide Dismutase; Water Pollutants, Chemical 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ETOCD 
100 1 |a Iummato, M.M. 
245 1 0 |a Effect of glyphosate acid on biochemical markers of periphyton exposed in outdoor mesocosms in the presence and absence of the mussel Limnoperna fortunei 
260 |b Wiley Blackwell  |c 2017 
270 1 0 |m Juárez, Á.B.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química BiológicaArgentina; email: abjuarez@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Magbanua, F.S., Townsend, C.R., Hageman, K.J., Lange, K., Lear, G., Lewis, G.D., Matthaei, C.D., Understanding the combined influence of fine sediment and glyphosate herbicide on stream periphyton communities (2013) Water Res, 47, pp. 5110-5120 
504 |a Bricheux, G., LeMoal, G., Hennequin, C., Coffe, G., Donnadieu, F., Portelli, C., Bohatier, J., Forestier, C., Characterization and evolution of natural aquatic biofilm communities exposed in vitro to herbicides (2013) Ecotox Environ Safe, 88, pp. 126-134 
504 |a Battaglin, W.A., Meyer, M.T., Kuivila, K.M., Dietze, J.E., Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation (2014) J Am Water Resour As, 50, pp. 275-290 
504 |a (2011), pp. 2012-2016. , http://www.researchandmarkets.com/reports/2101356/outlook_for_china_glyphosate_industry_20122016, CCM International., Outlook for China glyphosate industry, Overath, Germany. [cited 2016 November]. Available from; Aparicio, V., De Gerónimo, E., (2015), Hernández Guijarro K, Pérez D, Portocarrero R, Vidal C., Los plaguicidas agregados al suelo y su destino en el ambiente, 1st ed. Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina; (2012), Canadian Council of Ministers of the Environment., Canadian water quality guidelines for the protection of aquatic life Glyphosate. Winnipeg, Manitoba, Canada; (2005), World Health Organization., Glyphosate and AMPA in drinking-water. WHO/WSH/03.04/97. Geneva, Switzerland; Peruzzo, P.J., Porta, A.A., Ronco, A.E., Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina (2008) Environ Pollut, 156, pp. 61-66 
504 |a Ronco, A., Carriquiriborde, P., Natale, G.S., Martin, M., Mugni, H., Bonetto, C., (2008), pp. 209-239. , Integrated approach for the assessment of biotech soybean pesticides impact on low order stream ecosystems of the Pampasic region. In Chen J, Guo C, eds,, Ecosystem Ecology Research Trends, Nova Science, New York, NY, USA, pp; Vera, M.S., Lagomarsino, L., Sylvester, M., Pérez, G.L., Rodríguez, P., Mugni, H., Sinistro, R., Pizarro, H., New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems (2010) Ecotoxicology, 19, pp. 710-721 
504 |a Gaiser, E., Periphyton as an indicator of restoration in the Florida Everglades (2009) Ecological Indicators, 9, pp. S37-S45 
504 |a Montuelle, B., Dorigo, U., Bérard, A., Volat, B., Bouchez, A., Tlili, A., Gouy, V., Pesce, S., The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: An overview of the Ardiêres-Morcille experimental watershed (France) (2010) Hydrobiologia, 657, pp. 123-141 
504 |a Tohge, T., Watanabe, M., Hoefgen, R., Fernie, A.R., Shikimate and phenylalanine biosynthesis in the green lineage (2013) Frontiers in Plant Science, 4, p. 62 
504 |a Duke, S.O., (1988), pp. 1-58. , Glyphosate. In Kearney PC, Kaufman DD, eds,, Herbicides Chemistry Degradation and Mode of Action, Marcel Dekker, New York, NY, USA, pp; Debenest, T., Pinelli, E., Coste, M., Silvestre, J., Mazzella, N., Madigou, C., Delmas, F., Sensitivity of freshwater periphytic diatoms to agricultural herbicides (2009) Aquat Toxicol, 93, pp. 11-17 
504 |a Bonet, B., Corcoll, N., Tlili, A., Morin, S., Guasch, H., Antioxidant enzyme activities in biofilms as biomarker of Zn pollution in a natural system: An active bio-monitoring study (2014) Ecotox Environ Safe, 103, pp. 82-90 
504 |a Bonnineau, C., Tlili, A., Faggiano, L., Montuelle, B., Guasch, H., The use of antioxidant enzymes in freshwater biofilms: Temporal variability vs toxicological responses (2013) Aquat Toxicol, 136-137, pp. 60-71 
504 |a Romero, D., Ríos, D.M.M.C., Juárez, A.B., Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri (2011) Ecotox Environ Safe, 74, pp. 741-747 
504 |a Modesto, K.A., Martinez, C.B.R., Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus (2010) Chemosphere, 78, pp. 294-299 
504 |a Vera, M.S., Di Fiori, E., Lagomarsino, L., Sinistro, R., Escaray, R., Iummato, M.M., Juárez, A., Pizarro, H., Direct and indirect effects of the glyphosate formulation Glifosato Atanor® on freshwater microbial communities (2012) Ecotoxicology, 21, pp. 1805-1816 
504 |a Darrigran, G., Ezcurra, I., Invasion of the exotic freshwater mussel Limnoperna fortunei (Dunker 1857) (Bivalvia, Mytilidae) in South America (2000) Nautilus, 114, pp. 69-73 
504 |a Boltovskoy, D., Correa, N., Cataldo, D., Sylvester, F., Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond (2006) Biological Invasions, 8, pp. 947-963 
504 |a Pizarro, A., Di Fiori, E., Sinistro, R., Ramírez, M., Rodríguez, P., Vinocur, A., Cataldo, D., Impact of multiple anthropogenic stressors on freshwater: How do glyphosate and the invasive mussel Limnoperna fortunei affect microbial communities and water quality (2016) Ecotoxicology, 25, pp. 56-68 
504 |a Cataldo, D., O'Farrell, I., Paolucci, E., Sylvester, F., Boltovskoy, D., Impact of the invasive golden mussel (Limnoperna fortunei) on phytoplankton and nutrient cycling (2012) Aquatic Invasions, 7, pp. 91-100 
504 |a Chan, K., Bendell, L.I., Potential effects of an invasive bivalve, Nuttallia obscurata, on select sediment attributes within the intertidal region of coastal British Columbia (2013) J Exp Mar Biol Ecol, 444, pp. 66-72 
504 |a Di Fiori, E., Pizarro, H., dos Santos Afonso, M., Cataldo, D., Impact of the invasive mussel Limnoperna fortunei on glyphosate concentration in water (2012) Ecotox Environ Safe, 81, pp. 106-113 
504 |a Iummato, M.M., Di Fiori, E., Sabatini, S.E., Cacciatore, L.C., Cochón, A.C., Ríos, D.M.M.C., Juárez, A.B., Evaluation of biochemical markers in the golden mussel Limnoperna fortunei exposed to glyphosate acid in outdoor microcosms (2013) Ecotox Environ Safe, 95, pp. 123-129 
504 |a Pérez, G.L., Torremorell, A., Mugni, H., Rodríguez, P., Vera, M.S., Do Nascimento, M., Allende, L., Zagarese, H., Effects of the herbicide Roundup on freshwater microbial communities: A mesocosm study (2007) Ecol Appl, 17, pp. 2310-2322 
504 |a Blum, A., Narbondo, I., Oyhantcabal, G., Sancho, D., (2008), Soja transgénica y sus impactos en Uruguay La nueva colonización. RAP-AL, Montevideo, Uruguay; Cataldo, D., Vinocur, A., O'Farrell, I., Paolucci, E., Leites, V., Boltovskoy, D., The introduced bivalve Limnoperna fortunei boosts Microcystis growth in Salto Grande reservoir (Argentina): Evidence from mesocosm experiments (2012) Hydrobiologia, 680, pp. 25-38 
504 |a Zhu, Y., Zhang, F., Tong, C., Liu, W., Determination of glyphosate by ion chromatography (1999) J Chromatogr A, 850, pp. 297-301 
504 |a Lichtenthaler, H.K., Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes (1987) Method Enzymol, 148, pp. 349-382 
504 |a (2005), American Public Health Association., Standard Methods for the Examination of Water and Wastewaters, 21st ed. American Water Works Association, Water Environmental Federation, Washington DC; Bradford, M.M., A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding (1976) Anal Biochem, 72, pp. 248-254 
504 |a Buege, J.A., Aust, S.D., Microsomal lipid peroxidation (1978) Method Enzymol, 52, pp. 302-310 
504 |a Beauchamp, C., Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels (1971) Anal Biochem, 44, pp. 276-286 
504 |a Aebi, H., Catalase in vitro (1984) Method Enzymol, 105, pp. 121-126 
504 |a Huberty, C.J., A history of effect size indices (2002) Educ Psychol Meas, 62, pp. 227-240 
504 |a Cohen, J., (1988), Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Lawrence Erlbaum, New York, NY, USA; Vereecken, H., Mobility and leaching of glyphosate: A review (2005) Pest Manag Sci, 61, pp. 1139-1151 
504 |a Abdel-Navi, I.M., El-Shenawy, N.S., Taha, I.A., Moawad, T.S., Oxidative stress biomarkers and bioconcentration of Reldan and Roundup in the edible clam Ruditapes decusatus (2007) Acta Zool Sinica, 53, pp. 910-920 
504 |a Cedergreen, N., Streibig, J.C., Kudsk, P., Mathiassen, S.K., Duke, S.O., The occurrence of hormesis in plants and algae (2007) Dose Response, 5, pp. 150-162 
504 |a Lipok, J., Owsiak, T., Młynarz, P., Forlani, G., Kafarski, P., Phosphorus NMR as a tool to study mineralization of organophosphonates: The ability of Spirulina spp. to degrade glyphosate (2007) Enzyme Microb Tech, 41, pp. 286-291 
504 |a Tukaj, S., Tukaj, Z., Distinct chemicals contaminants induce the synthesis of Hsp70 proteins in green microalgae Desmodesmus subspicatus: Heat pretreatment increases cadmium resistance (2010) J Therm Biol, 35, pp. 239-244 
504 |a Kana, T.M., Geider, R.J., Critchley, C., Regulation of photosynthetic pigments in micro-algae by multiple environmental factors: A dynamic balance hypothesis (1997) New Phytol, 137, pp. 629-638 
504 |a Esterbauer, H., Schaur, R.J., Zollner, H., Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes (1991) Free Radical Bio Med, 11, pp. 81-128 
504 |a Bray, R.C., Cockle, S.A., Fielden, E.M., Roberts, P.B., Rotilio, G., Calabrese, L., Reduction and inactivation of superoxide dismutase by hydrogen peroxide (1974) Biochem J, 139, pp. 43-48 
504 |a Kono, Y., Fridovich, I., Superoxide radical inhibits catalase (1982) J Biol Chem, 257, pp. 5751-5754 
504 |a Spickett, C.M., The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis (2013) Redox Biology, 1, pp. 145-152 
504 |a Casano, L.M., Martin, M., Sabater, B., Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature-senescent than in young barley leaves (1998) Plant Physiology, 106, pp. 1033-1039 
504 |a Wolfe-Simon, F., Grzebyk, D., Schofield, O., Falkowski, P.G., The role and evolution of superoxide dismutases in algae (2005) J Phycol, 41, pp. 453-465 
504 |a Grivennikova, V.G., Cecchini, G., Vinogradov, A.D., Ammonium-dependent hydrogen peroxide production by mitochondria (2008) FEBS Lett, 582, pp. 2719-2724 
504 |a Ching, B.Y., Chew, S.F., Wong, W.P., Ip, Y.K., Environmental ammo­nia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper) (2009) Aquat Toxicol, 95, pp. 203-212 
520 3 |a Glyphosate is currently the most widely used herbicide in agricultural production. It generally enters aquatic ecosystems through surface water runoff and aerial drift. We evaluated the effect of glyphosate acid on biochemical parameters of periphyton exposed to concentrations of 1, 3, and 6 mg/L in outdoor mesocosms in the presence and absence of the mussel Limnoperna fortunei. Periphyton ash-free dry weight, chlorophyll a content, carotene/chlorophyll a ratio, lipid peroxidation levels, and superoxide dismutase and catalase activities were determined at days 0, 1, 7, 14, and 26 of the experimental period. Ash-free dry weight was similar between control and glyphosate-treated periphyton in the absence of L. fortunei. The latter had significantly lower carotene to chlorophyll a ratios and enzyme activities, and higher lipid peroxidation levels and chlorophyll a content than the former. These results show an adverse effect of glyphosate on the metabolism of periphyton community organisms, possibly inducing oxidative stress. On the contrary, no differences were observed in any of these variables between control and glyphosate-treated periphyton in the presence of L. fortunei. Mussels probably attenuated the herbicide effects by contributing to glyphosate dissipation. The results also demonstrate that biochemical markers provide useful information that may warn of herbicide impact on periphyton communities. Environ Toxicol Chem 2017;36:1775–1784. © 2016 SETAC. © 2017 SETAC  |l eng 
536 |a Detalles de la financiación: PICT 2010- 0908 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 11220130100020CO 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 20020120200176BA, 20020130100248BA 
536 |a Detalles de la financiación: The present study was partly supported by grants from CONICET-Argentina (Consejo Nacional de Investigaciones Cient?ficas y T?cnicas, 11220130100020CO), Agencia Nacional de Promoci?n Cient?fica y Tecnol?gica (ANPCyT, PICT 2010- 0908), and Universidad de Buenos Aires-Argentina (UBACyT 20020120200176BA and 20020130100248BA). 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina 
593 |a CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Instituto de Ecología Genética y Evolución (IEGEBA), Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina 
690 1 0 |a ALGAE 
690 1 0 |a FRESHWATER TOXICOLOGY 
690 1 0 |a GLYPHOSATE 
690 1 0 |a HERBICIDE 
690 1 0 |a MUSSEL 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PERIPHYTON 
690 1 0 |a STRESS RESPONSE 
690 1 0 |a AGRICULTURE 
690 1 0 |a ALGAE 
690 1 0 |a AQUATIC ECOSYSTEMS 
690 1 0 |a BIOCHEMISTRY 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a ENZYMES 
690 1 0 |a LIPIDS 
690 1 0 |a MOLLUSCS 
690 1 0 |a OXIDATION 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a OXYGEN 
690 1 0 |a SURFACE WATERS 
690 1 0 |a TOXICITY 
690 1 0 |a WEED CONTROL 
690 1 0 |a FRESHWATER TOXICOLOGY 
690 1 0 |a GLYPHOSATES 
690 1 0 |a MUSSEL 
690 1 0 |a PERIPHYTONS 
690 1 0 |a STRESS RESPONSE 
690 1 0 |a HERBICIDES 
690 1 0 |a BIOCHEMICAL MARKER 
690 1 0 |a CAROTENE 
690 1 0 |a CATALASE 
690 1 0 |a CHLOROPHYLL A 
690 1 0 |a GLYPHOSATE 
690 1 0 |a GLYPHOSATE ACID 
690 1 0 |a HERBICIDE 
690 1 0 |a SUPEROXIDE DISMUTASE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a BIOLOGICAL MARKER 
690 1 0 |a CAROTENOID 
690 1 0 |a CATALASE 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a CHLOROPHYLL A 
690 1 0 |a GLYCINE 
690 1 0 |a GLYPHOSATE 
690 1 0 |a HERBICIDE 
690 1 0 |a PIGMENT 
690 1 0 |a SUPEROXIDE DISMUTASE 
690 1 0 |a WATER POLLUTANT 
690 1 0 |a ALGA 
690 1 0 |a BIOCHEMICAL COMPOSITION 
690 1 0 |a BIOMARKER 
690 1 0 |a BIVALVE 
690 1 0 |a DOSE-RESPONSE RELATIONSHIP 
690 1 0 |a ECOTOXICOLOGY 
690 1 0 |a FRESHWATER 
690 1 0 |a GLYPHOSATE 
690 1 0 |a MESOCOSM 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PERIPHYTON 
690 1 0 |a POLLUTION EFFECT 
690 1 0 |a POLLUTION EXPOSURE 
690 1 0 |a ARTICLE 
690 1 0 |a BIOMASS 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DRY WEIGHT 
690 1 0 |a ENVIRONMENTAL CHANGE 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a EVALUATION STUDY 
690 1 0 |a LIMNOPERNA FORTUNEI 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a MESOCOSM 
690 1 0 |a METABOLISM 
690 1 0 |a MICROBIAL COMMUNITY 
690 1 0 |a MUSSEL 
690 1 0 |a NONHUMAN 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PERIPHYTON 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a ANALOGS AND DERIVATIVES 
690 1 0 |a ANALYSIS 
690 1 0 |a ANIMAL 
690 1 0 |a BIVALVE 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a ECOSYSTEM 
690 1 0 |a HALF LIFE TIME 
690 1 0 |a METABOLISM 
690 1 0 |a TOXICITY 
690 1 0 |a ULTRAVIOLET SPECTROPHOTOMETRY 
690 1 0 |a WATER POLLUTANT 
690 1 0 |a ALGAE 
690 1 0 |a LIMNOPERNA FORTUNEI 
690 1 0 |a ANIMALS 
690 1 0 |a BIOMARKERS 
690 1 0 |a BIVALVIA 
690 1 0 |a CAROTENOIDS 
690 1 0 |a CATALASE 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a ECOSYSTEM 
690 1 0 |a GLYCINE 
690 1 0 |a HALF-LIFE 
690 1 0 |a HERBICIDES 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a PIGMENTS, BIOLOGICAL 
690 1 0 |a SPECTROPHOTOMETRY, ULTRAVIOLET 
690 1 0 |a SUPEROXIDE DISMUTASE 
690 1 0 |a WATER POLLUTANTS, CHEMICAL 
700 1 |a Pizarro, H. 
700 1 |a Cataldo, D. 
700 1 |a Di Fiori, E. 
700 1 |a dos Santos Afonso, M. 
700 1 |a Ríos de Molina, María el Carmen 
700 1 |a Juárez, Ángela Beatriz 
773 0 |d Wiley Blackwell, 2017  |g v. 36  |h pp. 1775-1784  |k n. 7  |p Environ. Toxicol. Chem.  |x 07307268  |w (AR-BaUEN)CENRE-4635  |t Environmental Toxicology and Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019655605&doi=10.1002%2fetc.3820&partnerID=40&md5=6d438214cfc0a1328a5256c33d7809c2  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/etc.3820  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_07307268_v36_n7_p1775_Iummato  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07307268_v36_n7_p1775_Iummato  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_07307268_v36_n7_p1775_Iummato  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion