Nonlocal problems in thin domains

In this paper we consider nonlocal problems in thin domains. First, we deal with a nonlocal Neumann problem, that is, we study the behavior of the solutions to f(x)=∫Ω1×Ω2Jϵ(x−y)(uϵ(y)−uϵ(x))dy with Jϵ(z)=J(z1,ϵz2) and Ω=Ω1×Ω2⊂RN=RN1×RN2 a bounded domain. We find that there is a limit problem, that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pereira, M.C
Otros Autores: Rossi, J.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05982caa a22005897a 4500
001 PAPER-14838
003 AR-BaUEN
005 20230518204526.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85015724640 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JDEQA 
100 1 |a Pereira, M.C. 
245 1 0 |a Nonlocal problems in thin domains 
260 |b Academic Press Inc.  |c 2017 
270 1 0 |m Rossi, J.D.; Dpto. de Matemáticas, FCEyN, Universidad de Buenos AiresArgentina; email: jrossi@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo, J., Nonlocal Diffusion Problems (2010) Mathematical Surveys and Monographs, 165. , AMS 
504 |a Aris, R., On the dispersion of a solute in a fluid flowing through a tube (1956) Proc. Roy. Soc. Lond., Sect. A, 235, pp. 67-77 
504 |a Arrieta, J.M., Villanueva-Pesqueira, M., Unfolding operator method for thin domains with a locally periodic highly oscillatory boundary (2016) SIAM J. Math. Anal., 48 (3), pp. 1634-1671 
504 |a Bella, P., Feireisl, E., Novotny, A., Dimension reduction for compressible viscous fluids (2014) Acta Appl. Math., 134, pp. 111-121 
504 |a Barros, S.R.M., Pereira, M.C., Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary (2016) J. Math. Anal. Appl., 441 (1), pp. 375-392 
504 |a Cortazar, C., Elgueta, M., Rossi, J.D., Wolanski, N., How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems (2007) Arch. Ration. Mech. Anal., 187, pp. 137-156 
504 |a Cortazar, C., Elgueta, M., Rossi, J.D., Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions (2009) Israel J. Math., 170 (1), pp. 53-60 
504 |a Hale, J.K., Raugel, G., Reaction–diffusion equations on thin domains (1992) J. Math. Pures Appl., 9 (71), pp. 33-95 
504 |a Iftimie, D., The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–Stokes equations (1999) Bull. Soc. Math. France, 127, pp. 473-518 
504 |a Ferreira, R., Mascarenhas, M.L., Piatnitski, A., Spectral analysis in thin tubes with axial heterogeneities (2015) Port. Math., 72, pp. 247-266 
504 |a Fabricius, J., Koroleva, Y.O., Tsandzana, A., Wall, P., Asymptotic behavior of Stokes flow in a thin domain with a moving rough boundary (2014) Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2167). , 20 pp 
504 |a Liao, X., On the strong solutions of the inhomogeneous incompressible Navier–Stokes equations in a thin domain (2016) Differential Integral Equations, 29, pp. 167-182 
504 |a Marusic-Paloka, E., Pazanin, I., Modelling of heat transfer in a laminar flow through a helical pipe (2009) Math. Comput. Modelling, 50, pp. 1571-1582 
504 |a Pereira, M.C., Silva, R.P., Correctors for the Neumann problem in thin domains with locally periodic oscillatory structure (2015) Quart. Appl. Math., 73, pp. 537-552 
504 |a Pereira, M.C., Silva, R.P., Remarks on the p-Laplacian on thin domains (2015) Progr. Nonlinear Differential Equations Appl., pp. 389-403 
504 |a Prizzi, M., Rybakowski, K.P., Recent results on thin domain problems II (2002) Topol. Methods Nonlinear Anal., 19, pp. 199-219 
504 |a Raugel, G., Dynamics of Partial Differential Equations on Thin Domains (1995) Lecture Notes in Mathematics, 1609. , Springer-Verlag 
504 |a Shuichi, J., Morita, Y., Remarks on the behavior of certain Eigenvalues on a Singularly perturbed Domain with several Thin Channels (1991) Comm. Partial Differential Equations, 17 (3), pp. 189-226 
520 3 |a In this paper we consider nonlocal problems in thin domains. First, we deal with a nonlocal Neumann problem, that is, we study the behavior of the solutions to f(x)=∫Ω1×Ω2Jϵ(x−y)(uϵ(y)−uϵ(x))dy with Jϵ(z)=J(z1,ϵz2) and Ω=Ω1×Ω2⊂RN=RN1×RN2 a bounded domain. We find that there is a limit problem, that is, we show that uϵ→u0 as ϵ→0 in Ω and this limit function verifies ∫Ω2f(x1,x2)dx2=|Ω2|∫Ω1J(x1−y1,0)(U0(y1)−U0(x1))dy1, with U0(x1)=∫Ω2u0(x1,x2)dx2. In addition, we deal with a double limit when we add to this model a rescale in the kernel with a parameter that controls the size of the support of J. We show that this double limit exhibits some interesting features. We also study a nonlocal Dirichlet problem f(x)=∫RNJϵ(x−y)(uϵ(y)−uϵ(x))dy, x∈Ω, with uϵ(x)≡0, x∈RN∖Ω, and deal with similar issues. In this case the limit as ϵ→0 is u0=0 and the double limit problem commutes and also gives v≡0 at the end. © 2017 Elsevier Inc.  |l eng 
593 |a Dpto. de Matemática Aplicada, IME, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP, Brazil 
593 |a Dpto. de Matemáticas, FCEyN, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
690 1 0 |a DIRICHLET PROBLEM 
690 1 0 |a NEUMANN PROBLEM 
690 1 0 |a NONLOCAL EQUATIONS 
690 1 0 |a THIN DOMAINS 
700 1 |a Rossi, J.D. 
773 0 |d Academic Press Inc., 2017  |g v. 263  |h pp. 1725-1754  |k n. 3  |p J. Differ. Equ.  |x 00220396  |w (AR-BaUEN)CENRE-288  |t Journal of Differential Equations 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015724640&doi=10.1016%2fj.jde.2017.03.029&partnerID=40&md5=5f7fb64c7803c4fcd2cde925f657573a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jde.2017.03.029  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00220396_v263_n3_p1725_Pereira  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220396_v263_n3_p1725_Pereira  |y Registro en la Biblioteca Digital 
961 |a paper_00220396_v263_n3_p1725_Pereira  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75791