Influence of extrusion process conditions on starch film morphology

The conditions of extrusion process for food packaging are determinant on their morphology and, as consequence, on their functionality. The effect of the screw speed of a starch-glycerol system extruded at the same temperature profile was evaluated. The process at 80 rpm led to a material with the s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González-Seligra, P.
Otros Autores: Guz, L., Ochoa-Yepes, O., Goyanes, Silvia Nair, Famá, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16088caa a22012617a 4500
001 PAPER-14822
003 AR-BaUEN
005 20250423092400.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85020821884 
030 |a LBWTA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a González-Seligra, P. 
245 1 0 |a Influence of extrusion process conditions on starch film morphology 
260 |b Academic Press  |c 2017 
270 1 0 |m Famá, L.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LPM&C), Instituto de Física de Buenos Aires (IFIBA-CONICET), Ciudad Universitaria (1428), Argentina; email: merfama@hotmail.com 
504 |a Alam, M.S., Pathania, S., Sharma, A., Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings (2016) LWT-Food Science and Technology, 74, pp. 135-144 
504 |a Bashir, K., Swer, T.L., Prakash, K.S., Aggarwal, M., Physico-chemical and functional properties of gamma irradiated whole wheat flour and starch (2017) LWT-Food Science and Technology, 76, pp. 131-139 
504 |a Borries-Medrano, E., Jaime-Fonseca, M.R., Aguilar-Mendez, M.A., Starch-guar gum extrudates: Microstructure, physicochemical properties and in-vitro digestion (2016) Food Chemistry, 194, pp. 891-899 
504 |a Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of a free radical method to evaluate antioxidant activity (1995) LWT-Food Science and Technology, 28 (1), pp. 25-30 
504 |a Campos-Requena, V.H., Rivas, B.L., Pérez, M.A., Garrido-Miranda, K.A., Pereira, E.D., Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release (2015) European Polymer Journal, 71, pp. 461-475 
504 |a Chaudhary, A.L., Miler, M., Torley, P.J., Sopade, P.A., Halley, P.J., Amylose content and chemical modification effects on the extrusion of thermoplastic starch from maize (2008) Carbohydrate Polymers, 74 (4), pp. 907-913 
504 |a Deng, J., Li, K., Harkin-Jones, E., Price, M., Karnachi, N., Kelly, A., Energy monitoring and quality control of a single screw extruder (2014) Applied Energy, 113, pp. 1775-1785 
504 |a Famá, L., Bittante, A.M.B., Sobral, P.J., Goyanes, S., Gerschenson, L.N., Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites (2010) Materials Science and Engineering: C, 30 (6), pp. 853-859 
504 |a Famá, L., Goyanes, S., Gerschenson, L., Influence of storage time at room temperature on the physicochemical properties of cassava starch films (2007) Carbohydrate Polymers, 70, pp. 265-273 
504 |a Famá, L.M., Pettarin, V., Goyanes, S.N., Bernal, C.R., Starch/multi-walled carbon nanotubes composites with improved mechanical properties (2011) Carbohydrate Polymers, 83 (3), pp. 1226-1231 
504 |a Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Mechanical properties of tapioca-starch edible films containing sorbates (2005) LWT-food Science and Technology, 38 (6), pp. 631-639 
504 |a Famá, L., Rojo, P.G., Bernal, C., Goyanes, S., Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydrate Polymers, 87 (3), pp. 1989-1993 
504 |a Farhat, I., Blanshard, J., Mitchell, J., The retrogradation of waxy maize starch extrudates: Effects of storage temperature and water content (2000) Biopolymers, 53 (5), pp. 411-422 
504 |a García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42 (8), pp. 976-982 
504 |a García, N., Famá, L., D'Accorso, N., Goyanes, S., Biodegradable starch nanocomposites (2015) Eco-friendly polymer nanocomposites, pp. 17-77. , V.K. Thakur M.K. Thakur Springer India 
504 |a Ghanbarzadeh, B., Almasi, H., Biodegradable polymers (2013) Biodegradation – life of science, pp. 141-186. , R. Chamy F. Rosenkranz InTech Publications Croatia 
504 |a Gilfillan, W.N., Moghaddam, L., Bartley, J., Doherty, W.O.S., Thermal extrusion of starch film with alcohol (2016) Journal of Food Engineering, 170, pp. 92-99 
504 |a Godavarti, S., Karwe, M., Determination of specific mechanical energy distribution on a twin-screw extruder (1997) Journal of Agricultural Engineering Research, 67 (4), pp. 277-287 
504 |a González-Seligra, P., Eloy-Moura, L., Famá, L., Druzian, J.I., Goyanes, S., Influence of incorporation of starch nanoparticles in PBAT/TPS composite films (2016) Polymer International, 65, pp. 938-945 
504 |a Goudarzi, V., Shahabi-Ghahfarrokhi, I., Babaei-Ghazvini, A., Preparation of ecofriendly UV-protective food packaging material by starch/TiO 2 bio-nanocomposite: Characterization (2017) International Journal of Biological Macromolecules, 95, pp. 306-313 
504 |a Graaf, R.A., Karman, A.P., Janssen, L.P., Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing (2003) Starch-Stärke, 55 (2), pp. 80-86 
504 |a Gutiérrez, T.J., Morales, N.J., Pérez, E., Tapia, M.S., Famá, L., Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches (2015) Food Packaging and Shelf Life, 3, pp. 1-8 
504 |a Hietala, M., Mathew, A.P., Oksman, K., Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion (2013) European Polymer Journal, 49 (4), pp. 950-956 
504 |a Homayouni, H., Kavoosi, G., Nassiri, S.M., Physicochemical, antioxidant and antibacterial properties of dispersion made from tapioca and gelatinized tapioca starch incorporated with carvacrol (2017) LWT-Food Science and Technology, 77, pp. 503-509 
504 |a Hu, G., Chen, J., Gao, J., Preparation and characteristics of oxidized potato starch films (2009) Carbohydrate Polymers, 76 (2), pp. 291-298 
504 |a Jaramillo, C.M., Gutiérrez, T.J., Goyanes, S., Bernal, C., Famá, L., Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films (2016) Carbohydrate Polymers, 151, pp. 150-159 
504 |a Kelly, A.L., Brown, E.C., Coates, P.D., The effect of screw geometry on melt temperature profile in single screw extrusion (2006) Polymer Engineering & Science, 46 (12), pp. 1706-1714 
504 |a Kibar, E.A.A., Us, F., Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films (2013) Journal of Food Engineering, 114 (1), pp. 123-131 
504 |a Kruiskamp, P., Smits, A., Van Soest, J., Vliegenthart, J., The influence of plasticiser on molecular organisation in dry amylopectin measured by differential scanning calorimetry and solid state nuclear magnetic resonance spectroscopy (2001) Journal of Industrial Microbiology and Biotechnology, 26 (1-2), pp. 90-93 
504 |a Lai, L., Kokini, J., The effect of extrusion operating conditions on the on-line apparent viscosity of 98% Amylopectin (Amioca) and 70% Amylose (Hylon 7) corn starches during extrusion (1990) Journal of Rheology, 34 (8), pp. 1245-1266 
504 |a Lai, L., Kokini, J., Physicochemical changes and rheological properties of starch during extrusion. (A review) (1991) Biotechnology Progress, 7 (3), pp. 251-266 
504 |a Lara, S.C., Salcedo, F., Gelatinization and retrogradation phenomena in starch/montmorillonite nanocomposites plasticized with different glycerol/water ratios (2016) Carbohydrate Polymers, 151, pp. 206-212 
504 |a Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., Extrusion processing and characterization of edible starch films with different amylose contents (2011) Journal of Food Engineering, 106 (1), pp. 95-101 
504 |a Liu, H., Xie, F., Yu, L., Chen, L., Li, L., Thermal processing of starch-based polymers (2009) Progress in Polymer Science, 34 (12), pp. 1348-1368 
504 |a Madrigal, L., Sandoval, A.J., Müller, A.J., Effects of corn oil on glass transition temperatures of cassava starch (2011) Carbohydrate Polymers, 85 (4), pp. 875-884 
504 |a Maizura, M., Fazilah, A., Norziah, M.H., Karim, A.A., Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemon grass oil (2007) Journal of Food Science, 72 (6), pp. 324-330 
504 |a Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H., Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement (2015) Carbohydrate Polymers, 127, pp. 291-299 
504 |a Moreno, O., Pastor, C., Muller, J., Atarés, L., González, C., Chiralt, A., Physical and bioactive properties of corn starch–Buttermilk edible films (2014) Journal of Food Engineering, 141, pp. 27-36 
504 |a Oniszczuk, T., Wójtowicz, A., Oniszczuk, A., Mitrus, M., Combrzyński, M., Kręcisz, M., Effect of processing conditions on selected properties of starch-based biopolymers (2015) Agriculture and Agricultural Science Procedia, 7, pp. 192-197 
504 |a Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., Goyanes, S., Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging (2017) Food Hydrocolloids, 63, pp. 488-495 
504 |a Rodríguez-Castellanos, W., Martínez-Bustos, F., Rodrigue, D., Trujillo-Barragán, M., Extrusion blow molding of a starch–gelatin polymer matrix reinforced with cellulose (2015) European Polymer Journal, 73, pp. 335-343 
504 |a Rosa, D., Carvalho, C., Gaboardi, F., Rezende, M., Tavares, M., Petro, M., Evaluation of enzymatic degradation based on the quantification of glucose in thermoplastic starch and its characterization by mechanical and morphological properties and NMR measurements (2008) Polymer Testing, 27 (7), pp. 827-834 
504 |a Saiah, R., Sreekumar, P.A., Gopalakrishnan, P., Leblanc, N., Gattin, R., Saiter, J.M., Fabrication and characterization of 100% green composite: Thermoplastic based on wheat flour reinforced by flax fibers (2009) Polymer Composites, 30 (11) 
504 |a Seligra, P.G., Jaramillo, C.M., Famá, L., Goyanes, S., Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent (2016) Carbohydrate Polymers, 138, pp. 66-74 
504 |a Van Soest, J.J., Hulleman, S., De Wit, D., Vliegenthart, J., Crystallinity in starch bioplastics (1996) Industrial Crops and Products, 5 (1), pp. 11-22 
504 |a Wang, Y.Y., Ryu, G.-H., Physicochemical and antioxidant properties of extruded corn grits with corn fiber by CO2 injection extrusion process (2013) Journal of Cereal Science, 58 (1), pp. 110-116 
504 |a Wang, K., Wang, W., Ye, R., Liu, A., Xiao, J., Liu, Y., Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations (2017) Food Chemistry, 216, pp. 209-216 
504 |a Xie, M., Duan, Y., Li, F., Wang, X., Cui, X., Bacha, U., Preparation and characterization of modified and functional starch (hexadecyl corboxymethyl starch) ether using reactive extrusion (2016) Starch-Stärke, 68, pp. 1-9 
504 |a Xie, F., Flanagan, B.M., Li, M., Truss, R.W., Halley, P.J., Gidley, M.J., Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-methylimidazolium acetate (2015) Carbohydrate Polymers, 122, pp. 160-168 
504 |a Zepon, K.M., Vieira, L.F., Soldi, V., Salmoria, G.V., Kanis, L.A., Influence of process parameters on microstructure and mechanical properties of starch-cellulose acetate/silver sulfadiazine matrices prepared by melt extrusion (2013) Polymer Testing, 32 (6), pp. 1123-1127 
506 |2 openaire  |e Política editorial 
520 3 |a The conditions of extrusion process for food packaging are determinant on their morphology and, as consequence, on their functionality. The effect of the screw speed of a starch-glycerol system extruded at the same temperature profile was evaluated. The process at 80 rpm led to a material with the starch completely gelatinized, while the systems fabricated at 40 rpm and 120 rpm presented broken starch grains. The morphology and density of the broken grains depended on the screw speed. The material at 120 rpm showed broken grains with smaller size and lower concentration than that observed in the system at 40 rpm. After pressing at 120 rpm, the film formed (TPS120) resulted similar than that at 80 rpm (TPS80), while the film at 40 rpm (TPS40) kept some broken grains. TGA of the material obtained at 40 rpm showed more than one degradation process of the glycerol due to the inhomogeneous glycerol dispersion. DRX revealed more cristallinity in TPS40, being TPS120 the most amorphous. TPS80 had the highest strain at break while the others the higher modulus and stress at break. Water vapor permeability of TPS80 and TPS120 showed similar results and lower than TPS40. © 2017  |l eng 
536 |a Detalles de la financiación: PIP 2014? 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: 2012-1093 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires 
536 |a Detalles de la financiación: This work was supported by the following organizations: Agencia Nacional de Promoci?n Cient?fica y Tecnol?gica [ANPCyT 2012-1093], Consejo Nacional de Investigaciones Cient?ficas y T?cnicas [CONICET PIP 2014?2016 11220120100508CO, 2014?2016], and Universidad de Buenos Aires [UBACYT 2014?2017 20020130100495BA, 2014?2017]. 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LPM&C), Instituto de Física de Buenos Aires (IFIBA-CONICET), Ciudad Universitaria (1428), Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Instituto de Investigación e Ingeniería Ambiental, CONICET, Universidad Nacional de San Martín, 25 de Mayo y Francia (1650), San Martín, Provincia de Buenos Aires, Argentina 
690 1 0 |a EXTRUSION PROCESS CONDITIONS 
690 1 0 |a MORPHOLOGY 
690 1 0 |a PHYSICOCHEMICAL PROPERTIES 
690 1 0 |a SCREW SPEED 
690 1 0 |a STARCH 
690 1 0 |a DISPERSIONS 
690 1 0 |a GLYCEROL 
690 1 0 |a MORPHOLOGY 
690 1 0 |a SCREWS 
690 1 0 |a STARCH 
690 1 0 |a DEGRADATION PROCESS 
690 1 0 |a EXTRUSION PROCESS 
690 1 0 |a FOOD PACKAGING 
690 1 0 |a PHYSICOCHEMICAL PROPERTY 
690 1 0 |a SCREW SPEED 
690 1 0 |a STRAIN AT BREAK 
690 1 0 |a TEMPERATURE PROFILES 
690 1 0 |a WATER VAPOR PERMEABILITY 
690 1 0 |a EXTRUSION 
700 1 |a Guz, L. 
700 1 |a Ochoa-Yepes, O. 
700 1 |a Goyanes, Silvia Nair 
700 1 |a Famá, L. 
773 0 |d Academic Press, 2017  |g v. 84  |h pp. 520-528  |p LWT  |x 00236438  |w (AR-BaUEN)CENRE-292  |t LWT 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020821884&doi=10.1016%2fj.lwt.2017.06.027&partnerID=40&md5=8de21b1a8e94dcba8ee3fff1a02e8e18  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.lwt.2017.06.027  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00236438_v84_n_p520_GonzalezSeligra  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00236438_v84_n_p520_GonzalezSeligra  |y Registro en la Biblioteca Digital 
961 |a paper_00236438_v84_n_p520_GonzalezSeligra  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75775