An optimal transportation problem with a cost given by the Euclidean distance plus import/export taxes on the boundary

In this paper we analyze a mass transportation problem in a bounded domain in which there is the possibility of import/export mass across the boundary paying a tax in addition to the transport cost that is assumed to be given by the Euclidean distance. We show a general duality argument and for the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mazón, J.M
Otros Autores: Rossi, J.D, Toledo, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: European Mathematical Society Publishing House 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05267caa a22005297a 4500
001 PAPER-14784
003 AR-BaUEN
005 20230518204522.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84894794459 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Mazón, J.M. 
245 1 3 |a An optimal transportation problem with a cost given by the Euclidean distance plus import/export taxes on the boundary 
260 |b European Mathematical Society Publishing House  |c 2014 
506 |2 openaire  |e Política editorial 
504 |a Agueh, M., Existence of solutions to degenerate parabolic equations via the Monge- Kantorovich theory (2005) Adv. Differential Equations, 10 (3), pp. 309-360 
504 |a Ambrosio, L., Lecture notes on optimal transport problems Mathematical Aspects of Evolving Interfaces (Funchal 2000), 1 (1812), p. 2003. , Springer, Berlin Lecture Notes in Math 
504 |a Ambrosio, L., Gigli, N., Savaré, G., Gradient flows in metric spaces and in the space of probability measures (2005) Lectures in Mathematics ETH Zürich, , Birkhäuser Verlag, Basel 
504 |a Ambrosio, L., Pratelli, A., Existence and stability results in the L1 theory of optimal transportation (2003) Optimal Transportation and Applications (Martina Franca 2001), pp. 123-160. , Springer, Berlin Lecture Notes in Math. 1813 
504 |a Brown, L.D., Purves, R., Measurable selections of extrema (1973) Ann. Statist., 1, pp. 902-912 
504 |a Caffarelli, L.A., McCann, R.J., Free boundaries in optimal transport and Monge-Ampère obstacle problems (2010) Ann. Of Math.(2), 171 (2), pp. 673-730 
504 |a Evans, L.C., Gangbo, W., Differential equations methods for the Monge- Kantorovich mass transfer problem (1999) Mem. Amer. Math. Soc., 137 (653), pp. 8+66 
504 |a Figalli, A., The optimal partial transport problem (2010) Arch. Ration. Mech. Anal., 195 (2), pp. 533-560 
504 |a Figalli, A., Gigli, N., A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions (2010) J. Math. Pures Appl.(9), 94 (2), pp. 107-130 
504 |a Kantorovich, L.V., On the translocation of masses (1942) Acad. Sci., 37, pp. 199-201. , C. R. (Doklady) URSS (N.S.) 
504 |a Sudakov, V.N., Geometric problems in the theory of infinite-dimensional probability distributions (1976) Cover to Cover Translation of Trudy Mat. Inst. Steklov, 141 
504 |a Sudakov, V.N., Proc. Stekelov Inst. Math., 1979, pp. 1-178 
504 |a Talenti, G., Inequalities in rearrangement invariant function spaces (1994) Nonlinear Analysis, Function Spaces and Applications, 5, pp. 177-230. , (Prague 1994). Prometheus, Prague 
504 |a Villani, C., Topics in optimal transportation (2003) Graduate Studies in Mathematics 58, , American Mathematical Society Providence, RI 
504 |a Villani, C., Optimal transport. Old and new (2009) Fundamental Principles of Mathematical Sciences, 338. , Springer-Verlag Berlin 
520 3 |a In this paper we analyze a mass transportation problem in a bounded domain in which there is the possibility of import/export mass across the boundary paying a tax in addition to the transport cost that is assumed to be given by the Euclidean distance. We show a general duality argument and for the dual problem we find a Kantorovich potential as the limit as p→∞ of solutions to p-Laplacian type problems with nonlinear boundary conditions. In addition, we show that this limit encodes all the relevant information for our problem. It provides the masses that are exported and imported from the boundary and also allows the construction of an optimal transport plan. Finally we show that the arguments can be adapted to deal with the case in which the mass that can be exported/imported is bounded by prescribed functions. © European Mathematical Society.  |l eng 
593 |a Departament d'Anàlisi Matemàtica, Universitat de València, Dr. Moliner 50, 46100-Burjassot, Valencia, Spain 
593 |a Departamento de Análisis Matemático, Universidad de Alicante, Apdo. correos 99, 03080-Alicante, Spain 
593 |a Departamento de Matemática, FCEyN UBA, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina 
690 1 0 |a MASS TRANSPORT 
690 1 0 |a MONGE-KANTOROVICH PROBLEMS 
690 1 0 |a P-LAPLACIAN EQUATION 
700 1 |a Rossi, J.D. 
700 1 |a Toledo, J. 
773 0 |d European Mathematical Society Publishing House, 2014  |g v. 30  |h pp. 277-308  |k n. 1  |p Rev. Mat. Iberoam.  |x 02132230  |t Revista Matematica Iberoamericana 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894794459&doi=10.4171%2frmi%2f778&partnerID=40&md5=c2ebcdb392db16b42e289032c0f0a3db  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.4171/rmi/778  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02132230_v30_n1_p277_Mazon  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02132230_v30_n1_p277_Mazon  |y Registro en la Biblioteca Digital 
961 |a paper_02132230_v30_n1_p277_Mazon  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75737