Order of convergence of the finite element method for the p(x)-Laplacian
In this work, we study the rate of convergence of the finite element method for the p(x)-Laplacian (1<p1 ≤ p(x)≤ p2 ≤ 2) in a bounded convex domain in ℝ2. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Oxford University Press
2014
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 06490caa a22006257a 4500 | ||
|---|---|---|---|
| 001 | PAPER-14766 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204521.0 | ||
| 008 | 190411s2014 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84947909793 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Del Pezzo, L.M. | |
| 245 | 1 | 0 | |a Order of convergence of the finite element method for the p(x)-Laplacian |
| 260 | |b Oxford University Press |c 2014 | ||
| 270 | 1 | 0 | |m Martínez, S.; IMAS-CONICET, Departamento de Matemática, FCEyN, Pabellón I, Argentina; email: smartin@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Barrett, J.W., Liu, W.B., Finite element approximation of the p-Laplacian (1993) Math. Comp., 61, pp. 523-537 | ||
| 504 | |a Belenki, L., Diening, L., Kreuzer, C., Optimality of an adaptive finite element method for the p-Laplacian equation (2012) IMA J. Numer. Anal., 32, pp. 484-510 | ||
| 504 | |a Bollt, E.M., Chartrand, R., Esedoglu, S., Schultz, P., Vixie, K.R., Graduated adaptive image denoising: Local compromise between total variation and isotropic diffusion (2009) Adv. Comput. Math., 31, pp. 61-85 | ||
| 504 | |a Breit, D., Diening, L., Schwarzacher, S., (2013) Finite Element Approximation of the P()-Laplacian, , arXiv preprint arXiv: 1311.5121 | ||
| 504 | |a Bystrom, J., Sharp constants for some inequalities connected to the p-Laplace operator (2005) JIPAM. J. Inequal. Pure Appl. Math., 6, p. 8. , Article 56 pp. (electronic | ||
| 504 | |a Carelli, E., Haehnle, J., Prohl, A., Convergence analysis for incompressible generalized Newtonian fluid flows with nonstandard anisotropic growth conditions (2010) SIAM J. Numer. Anal., 48, pp. 164-190 | ||
| 504 | |a Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration (2006) SIAM J. Appl. Math., 66, pp. 1383-1406. , electronic | ||
| 504 | |a Ciarlet, P., (1978) The Finite Element Method for Elliptic Problems, 68. , Amsterdam: North-Holland | ||
| 504 | |a Del Pezzo, L.M., Lombardi, A.L., Martínez, S., Interior penalty discontinuous Galerkin FEM for the p(x)-Laplacian (2012) SIAM J. Numer. Anal., 50, pp. 2497-2521 | ||
| 504 | |a Del Pezzo, L.M., Martínez, S., H2 regularity for the p(x)-Laplacian in two-dimensional convex domains (2014) J. Math. Anal. Appl., 410, pp. 939-952 | ||
| 504 | |a Diening, L., (2002) Theoretical and Numerical Results for Electrorheological Fluids., p. 7. , Ph.D Thesis, Institut fur Angewandte Mathematik, Mathematische Fakultat | ||
| 504 | |a Diening, L., Maximal function on generalized Lebesgue spaces Lp() (2004) Math. Inequal. Appl., 7, pp. 245-253 | ||
| 504 | |a Diening, L., Harjulehto, P., Hasto, P., Røuzicka, M., (2011) Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, , vol. 2017. Heidelberg: Springer | ||
| 504 | |a Diening, L., Hasto, P., Nekvinda, A., Open problems in variable exponent Lebesgue and Sobolev spaces (2004) FSDONA04 Proceedings, pp. 38-58. , P. Drabek & J. Rakosnik ed.). Milovy, Czech Republic | ||
| 504 | |a Ebmeyer, C., Liu, W.B., Quasi-norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems (2005) Numer. Math., 100, pp. 233-258 | ||
| 504 | |a Glowinski, R., Numerical methods for nonlinear variational problems (2008) Sci. Comput., , Berlin: Springer. Reprint of the 1984 original | ||
| 504 | |a Kovacik, O., Rakosník, J., On spaces Lp(x) and Wk, p(x) (1991) Czechoslovak Math. J., 41, pp. 592-618 | ||
| 504 | |a Liu, W.B., Barrett, J.W., A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation (1993) Nonlinear Anal., 21, pp. 379-387 | ||
| 504 | |a Liu, W.B., Barrett, J.W., Higher-order regularity for the solutions of some degenerate quasilinear elliptic equations in the plane (1993) SIAM J. Math. Anal., 24, pp. 1522-1536 | ||
| 504 | |a Liu, W.B., Barrett, J.W., A remark on the regularity of the solutions of the p-Laplacian and its application to their finite element approximation (1993) J. Math. Anal. Appl., 178, pp. 470-487 | ||
| 504 | |a Pick, L., Kufner, A., John, O., Fucík, S., (2013) Function Spaces., 1. , extended ed., De Gruyter Series in Nonlinear Analysis and Applications, vol. 14. Berlin: Walter de Gruyter | ||
| 504 | |a Prohl, A., Isabelle, W., (2007) Convergence of An Implicit Finite Element Discretization for A Class of Parabolic Equations with Nonstandard Anisotropic Growth Conditions., , http://na.uni-Duebingen.de/preprints.shtml | ||
| 504 | |a Røuzicka, M., (2000) Electrorheological Fluids Modeling and Mathematical Theory, , Lecture Notes in Mathematics vol. 1748. Berlin: Springer | ||
| 504 | |a Samko, S., (2000) Denseness of C8 0 (RN) in the Generalized Sobolev Spaces WM, P(X)(RN). Direct and Inverse Problems of Mathematical Physics (Newark, de 1997), pp. 333-342. , International Society for Analysis, Applications and Computation vol. 5. Dordrecht: Kluwer Acad | ||
| 520 | 3 | |a In this work, we study the rate of convergence of the finite element method for the p(x)-Laplacian (1<p1 ≤ p(x)≤ p2 ≤ 2) in a bounded convex domain in ℝ2. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. |l eng | |
| 593 | |a CONICET, Departamento de Matemática, FCEyN, Pabellón I, Buenos Aires, Argentina | ||
| 593 | |a IMAS-CONICET, Departamento de Matemática, FCEyN, Pabellón I, Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a ELLIPTIC EQUATIONS |
| 690 | 1 | 0 | |a FINITE ELEMENT METHOD |
| 690 | 1 | 0 | |a VARIABLE EXPONENT SPACES |
| 700 | 1 | |a Martínez, S. | |
| 773 | 0 | |d Oxford University Press, 2014 |g v. 35 |h pp. 1864-1887 |k n. 4 |p IMA J. Numer. Anal. |x 02724979 |w (AR-BaUEN)CENRE-1615 |t IMA Journal of Numerical Analysis | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947909793&doi=10.1093%2fimanum%2fdru050&partnerID=40&md5=5304fd338069e895145579fcd7da7179 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1093/imanum/dru050 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_02724979_v35_n4_p1864_DelPezzo |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724979_v35_n4_p1864_DelPezzo |y Registro en la Biblioteca Digital |
| 961 | |a paper_02724979_v35_n4_p1864_DelPezzo |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 75719 | ||