Order of convergence of the finite element method for the p(x)-Laplacian

In this work, we study the rate of convergence of the finite element method for the p(x)-Laplacian (1<p1 ≤ p(x)≤ p2 ≤ 2) in a bounded convex domain in ℝ2. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.

Guardado en:
Detalles Bibliográficos
Autor principal: Del Pezzo, L.M
Otros Autores: Martínez, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Oxford University Press 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06490caa a22006257a 4500
001 PAPER-14766
003 AR-BaUEN
005 20230518204521.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84947909793 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Del Pezzo, L.M. 
245 1 0 |a Order of convergence of the finite element method for the p(x)-Laplacian 
260 |b Oxford University Press  |c 2014 
270 1 0 |m Martínez, S.; IMAS-CONICET, Departamento de Matemática, FCEyN, Pabellón I, Argentina; email: smartin@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Barrett, J.W., Liu, W.B., Finite element approximation of the p-Laplacian (1993) Math. Comp., 61, pp. 523-537 
504 |a Belenki, L., Diening, L., Kreuzer, C., Optimality of an adaptive finite element method for the p-Laplacian equation (2012) IMA J. Numer. Anal., 32, pp. 484-510 
504 |a Bollt, E.M., Chartrand, R., Esedoglu, S., Schultz, P., Vixie, K.R., Graduated adaptive image denoising: Local compromise between total variation and isotropic diffusion (2009) Adv. Comput. Math., 31, pp. 61-85 
504 |a Breit, D., Diening, L., Schwarzacher, S., (2013) Finite Element Approximation of the P()-Laplacian, , arXiv preprint arXiv: 1311.5121 
504 |a Bystrom, J., Sharp constants for some inequalities connected to the p-Laplace operator (2005) JIPAM. J. Inequal. Pure Appl. Math., 6, p. 8. , Article 56 pp. (electronic 
504 |a Carelli, E., Haehnle, J., Prohl, A., Convergence analysis for incompressible generalized Newtonian fluid flows with nonstandard anisotropic growth conditions (2010) SIAM J. Numer. Anal., 48, pp. 164-190 
504 |a Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration (2006) SIAM J. Appl. Math., 66, pp. 1383-1406. , electronic 
504 |a Ciarlet, P., (1978) The Finite Element Method for Elliptic Problems, 68. , Amsterdam: North-Holland 
504 |a Del Pezzo, L.M., Lombardi, A.L., Martínez, S., Interior penalty discontinuous Galerkin FEM for the p(x)-Laplacian (2012) SIAM J. Numer. Anal., 50, pp. 2497-2521 
504 |a Del Pezzo, L.M., Martínez, S., H2 regularity for the p(x)-Laplacian in two-dimensional convex domains (2014) J. Math. Anal. Appl., 410, pp. 939-952 
504 |a Diening, L., (2002) Theoretical and Numerical Results for Electrorheological Fluids., p. 7. , Ph.D Thesis, Institut fur Angewandte Mathematik, Mathematische Fakultat 
504 |a Diening, L., Maximal function on generalized Lebesgue spaces Lp() (2004) Math. Inequal. Appl., 7, pp. 245-253 
504 |a Diening, L., Harjulehto, P., Hasto, P., Røuzicka, M., (2011) Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, , vol. 2017. Heidelberg: Springer 
504 |a Diening, L., Hasto, P., Nekvinda, A., Open problems in variable exponent Lebesgue and Sobolev spaces (2004) FSDONA04 Proceedings, pp. 38-58. , P. Drabek & J. Rakosnik ed.). Milovy, Czech Republic 
504 |a Ebmeyer, C., Liu, W.B., Quasi-norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems (2005) Numer. Math., 100, pp. 233-258 
504 |a Glowinski, R., Numerical methods for nonlinear variational problems (2008) Sci. Comput., , Berlin: Springer. Reprint of the 1984 original 
504 |a Kovacik, O., Rakosník, J., On spaces Lp(x) and Wk, p(x) (1991) Czechoslovak Math. J., 41, pp. 592-618 
504 |a Liu, W.B., Barrett, J.W., A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation (1993) Nonlinear Anal., 21, pp. 379-387 
504 |a Liu, W.B., Barrett, J.W., Higher-order regularity for the solutions of some degenerate quasilinear elliptic equations in the plane (1993) SIAM J. Math. Anal., 24, pp. 1522-1536 
504 |a Liu, W.B., Barrett, J.W., A remark on the regularity of the solutions of the p-Laplacian and its application to their finite element approximation (1993) J. Math. Anal. Appl., 178, pp. 470-487 
504 |a Pick, L., Kufner, A., John, O., Fucík, S., (2013) Function Spaces., 1. , extended ed., De Gruyter Series in Nonlinear Analysis and Applications, vol. 14. Berlin: Walter de Gruyter 
504 |a Prohl, A., Isabelle, W., (2007) Convergence of An Implicit Finite Element Discretization for A Class of Parabolic Equations with Nonstandard Anisotropic Growth Conditions., , http://na.uni-Duebingen.de/preprints.shtml 
504 |a Røuzicka, M., (2000) Electrorheological Fluids Modeling and Mathematical Theory, , Lecture Notes in Mathematics vol. 1748. Berlin: Springer 
504 |a Samko, S., (2000) Denseness of C8 0 (RN) in the Generalized Sobolev Spaces WM, P(X)(RN). Direct and Inverse Problems of Mathematical Physics (Newark, de 1997), pp. 333-342. , International Society for Analysis, Applications and Computation vol. 5. Dordrecht: Kluwer Acad 
520 3 |a In this work, we study the rate of convergence of the finite element method for the p(x)-Laplacian (1<p1 ≤ p(x)≤ p2 ≤ 2) in a bounded convex domain in ℝ2. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.  |l eng 
593 |a CONICET, Departamento de Matemática, FCEyN, Pabellón I, Buenos Aires, Argentina 
593 |a IMAS-CONICET, Departamento de Matemática, FCEyN, Pabellón I, Buenos Aires, Argentina 
690 1 0 |a ELLIPTIC EQUATIONS 
690 1 0 |a FINITE ELEMENT METHOD 
690 1 0 |a VARIABLE EXPONENT SPACES 
700 1 |a Martínez, S. 
773 0 |d Oxford University Press, 2014  |g v. 35  |h pp. 1864-1887  |k n. 4  |p IMA J. Numer. Anal.  |x 02724979  |w (AR-BaUEN)CENRE-1615  |t IMA Journal of Numerical Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947909793&doi=10.1093%2fimanum%2fdru050&partnerID=40&md5=5304fd338069e895145579fcd7da7179  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1093/imanum/dru050  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02724979_v35_n4_p1864_DelPezzo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724979_v35_n4_p1864_DelPezzo  |y Registro en la Biblioteca Digital 
961 |a paper_02724979_v35_n4_p1864_DelPezzo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75719