The ontological status of open quantum systems sebastian fortin

In textbooks on quantum mechanics, the laws of the theory are presented as applied to closed quantum systems. Although there is no universally accepted and definitive interpretation of the formalism, certain ideas allow us to think about the concept of quantum system. The state of a closed quantum s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fortin, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nova Science Publishers, Inc. 2014
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11921caa a22009017a 4500
001 PAPER-14720
003 AR-BaUEN
005 20230518204517.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84953403623 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Fortin, S. 
245 1 4 |a The ontological status of open quantum systems sebastian fortin 
260 |b Nova Science Publishers, Inc.  |c 2014 
270 1 0 |m Fortin, S.; CONICET, Department of Physics, FCEN (UBA)Argentina 
506 |2 openaire  |e Política editorial 
504 |a Calzetta, E., Hu, B., (2008) Nonequilibrium Quantum Field Theory, , Cambridge University Press, Cambridge 
504 |a Castagnino, M., Fortin, S., Laura, R., Lombardi, O., A general theoretical frameworkfor decoherence in open and closed systems (2008) Classical and Quantum Gravity, 25, p. 154002 
504 |a Schlosshauer, M., (2007) Decoherence and the Quantum-to-Classical transition, , Springer, Berlin 
504 |a d'Espagnat, B., (1976) Conceptual Foundations of Quantum Mechanics, , Benjamin, Reading MA 
504 |a Castagnino, M., Fortin, S., Lombardi, O., Suppression of decoherence in a generalization of the spin-bath model (2010) Journal of Physics A: Mathematical and Theoretical, 43, p. 065304 
504 |a Lombardi, O., Fortin, S., Castagnino, M., The problem of identifying the system and the environment in the phenomenon of decoherence (2012) Philosophical Issues in the Sciences, 3, pp. 161-174. , H. W. de Regt, S. Hartmann y S. Okasha (eds.), Springer Berlin 
504 |a Castagnino, M., Fortin, S., Predicting decoherence in discrete models (2011) International Journal of Theoretical Physics, 50, pp. 2259-2267 
504 |a Ballentine, L.E., (1990) Quantum Mechanics, , Prentice Hall, New York 
504 |a Landau, L.D., Lifshitz, E.M., (1972) Mecánica Cuántica No-Relativista, , Reverté, Barcelona 
504 |a Belot, G., Earman, J.J., Chaos out of order: Quantum mechanics, the correspondence principle and chaos (1997) Studies in History and Philosophy of Modern Physics, 28, pp. 147-182 
504 |a Dito, G., Sternheimer, D., Deformation quantization: Genesis, developments and metamorphoses (2002) IRMA Lectures in Mathematics and Theoretical Physics, 1. , G. Halbout (ed.), W. de Gruyter & Co, Berlin 
504 |a Kontsevich, M., Deformation quantization of poisson manifolds (2003) Letters in Mathematical Physics, 66, pp. 157-216 
504 |a Zurek, W.H., Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? (1981) Physical Review D, 24, pp. 1516-1524 
504 |a Auletta, G., (2000) Foundations and Interpretation of Quantum Mechanics, , World Scientific, Singapore 
504 |a Leggett, J., Reflections on the quantum measurement paradox (1987) Quantum Implications, pp. 85-104. , B. J. Hiley and F. D. Peat (eds.), Routledge and Kegan Paul, London 
504 |a Bub, J., Quantum mechanics without the projecton postulate (1992) Foundations of Physics, 22, pp. 737-754 
504 |a Anderson, P.W., Science: A 'dappled world' or a 'seamless web'? (2001) Studies in History and Philosophy of Modern Physics, 34, pp. 487-494 
504 |a Healey, R., Dissipating the quantum measurement problem (1995) Topoi, 14, pp. 55-65 
504 |a Bacciagaluppi, G., The role of decoherence in quantum mechanics The Stanford Encyclopedia of Philosophy, , http://plato.stanford.edu/archives/fall2008/entries/qm-decoherence/, E. N. Zalta (ed.), (Fall 2008 Edition) 
504 |a Adler, S., Why decoherence has not solved the measurement problem: A response to P. W. Anderson (2003) Studies in History and Philosophy of Modern Physics, 34, pp. 135-142 
504 |a Schrödinger, E., (2015) Mathematical Proceedings of the Cambridge Philosophical Society, 31, pp. 555-563 
504 |a d'Espagnat, B., An elementary note about mixtures (2016) Preludes in Theoretical Physics, , A. De-Shalit, H. Feshbach and L. van Hove (eds.), North-Holland, Amsterdam 
504 |a d'Espagnat, B., A note on measurement (2000) Physics Letters A, 282, pp. 133-137 
504 |a Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.O., (2003) Decoherence and the Appearance of a Classical World in Quantum Theory, , Springer Verlag, Berlin 
504 |a Zurek, W.H., Preferred sets of states, predictability, classicality and environment- induced decoherence (1994) Physical Origins of Time Asymmetry, , J. J. Halliwell, J. Pérez-Mercader and W. H. Zurek (eds.), Cambridge, Cambridge University Press 
504 |a Zurek, W.H., Decoherence, einselection, and the existential interpretation (1998) Philosophical Transactions of the Royal Society, A356, pp. 1793-1821 
504 |a Castagnino, M., Fortin, S., Non-Hermitian Hamiltonians in decoherence and equilibrium theory (2012) M. Castagnino and S. Fortin, Journal of Physics A: Mathematical and Theoretical, 45, p. 444009 
504 |a Castagnino, M., Fortin, S., New bases for a general definition for the moving preferred basis (2011) Modern Physics Letters A, 26, pp. 2365-2373 
504 |a Castagnino, M., Lombardi, O., Self-induced decoherence: A new approach (2004) Studies in History and Philosophy of Modern Physics, 35, pp. 73-107 
504 |a Zurek, W.H., Environment-induced superselection rules (1982) Physical Review D, 26, pp. 1862-1880 
504 |a Castagnino, M., Fortin, S., Lombardi, O., The effect of random coupling coefficientson decoherence (2010) Modern Physics Letters A, 25, pp. 611-617 
504 |a Castagnino, M., Fortin, S., Lombardi, O., Is the decoherence of a system the result of its interaction with the environment? (2010) Modern Physics Letters A, 25, pp. 1431-1439 
504 |a Omnés, R., Decoherence, irreversibility and the selection by decoherence of quantum states with definite probabilities (2002) Physical Review, A 65, p. 052120 
504 |a Calzetta, E., Hu, B., (2008) Nonequilibrium Quantum Field Theory, , Cambridge U. Press, Cambridge 
504 |a Castagnino, M., Fortin, S., Laura, R., Lombardi, O., A general theoretical framework for decoherence in open and closed systems (2008) Classical and Quantum Gravity, 25, p. 154002 
504 |a Schlosshauer, M., (2007) Decoherence and the Quantum-to-Classical transition, , Springer, Berlin 
504 |a d'Espagnat, B., (1976) Conceptual Foundations of Quantum Mechanics, , Benjamin, Reading MA 
504 |a Castagnino, M., Fortin, S., Lombardi, O., Suppression of decoherence in a generalization of the spin-bath model (2010) Journal of Physics A: Mathematical and Theoretical, 43, p. 065304 
504 |a Lombardi, O., Fortin, S., Castagnino, M., The problem of identifying the system and the environment in the phenomenon of decoherence (2012) Philosophical Issues in the Sciences, 3, pp. 161-174. , H. W. de Regt, S. Hartmann y S. Okasha (eds.), Springer, Berlin 
504 |a Castagnino, M., Fortin, S., Predicting decoherence in discrete models (2011) International Journal of Theoretical Physics, 50, pp. 2259-2267 
520 3 |a In textbooks on quantum mechanics, the laws of the theory are presented as applied to closed quantum systems. Although there is no universally accepted and definitive interpretation of the formalism, certain ideas allow us to think about the concept of quantum system. The state of a closed quantum system U is represented by a density operator ρ, and its unitary time evolution is governed by the Schrödinger equation. The study of phenomena such as relaxation and decoherence requires the introduction of the notion of open system, that is, a quantum system that interacts with other quantum systems. In general, the subsystems of a closed system U interact with each other. The state of each one of these subsystems is represented by a reduced operator ρ R , obtained from state ρ of the total system U by menas of the mathematical operation called partial trace. The reduced operator ρ R of a subsystem allows us to compute the mean value of all its observables. For this reason, the usual practice is to conceive open subsystems as legitimate quantum systems (for example, a particle), represented by their corresponding reduced states Rρ , whose evolution is not ruled by the Schrödinger equation. For this reason, an open quantum system can follow non-unitary evolutions, such as relaxation and decoherence [1]. Decoherence is a process originally proposed to explain the diagonalization of the reduced operator [2]. The orthodox version, environment-induced decoherence (EID), only applies to open systems because, as its name implies, considers the system under study embedded in an environment that induces decoherence. According to this approach, under certain conditions the reduced state of an open system becomes diagonal, and this fact makes possible its interpretation as a classical state [3]. Thus, decoherence allows us to study the quantum-to-classical transition of a quantum system, for instance, a quantum particle. In this paper we study the properties of open systems and we discuss their ontological status. First, we compare the mathematical properties of the quantum state with those of the reduced state. Following the road opened by Bernard d'Espagnat [4], we argue that although ρ and ρR have similar mathematical structure, they cannot be interpreted in the same fashion. In a second step, we study the phenomenon of decoherence in situations where the whole closed system can be split into an open system of interest and its environment in different ways [5 - 6]. We show that the lack of a criterion to define open system and environment is a manifestation of the relative nature of decoherence, and prevents us from conceiving the open system as a physical entity of the same ontological status as that of the closed system. Finally, based on [7], we propose a formalism designed to study the phenomena of relaxation and decoherence from a closed-system perspective. Since this formalism does not appeal to reduced states, it avoids the interpretive problems mentioned above. On the basis of this work we conclude that, given the problems of interpretation derived from the notion of reduced state, the use of the notion of open systems should be avoided. According to this viewpoint, the only legitimate quantum system is the whole closed system with its unitary evolution, and the study of its dynamical properties is sufficient to describe the phenomena of decoherence and relaxation. © 2014 by Nova Science Publishers, Inc. All rights reserved.  |l eng 
593 |a CONICET, Department of Physics, FCEN (UBA), Buenos Aires, Argentina 
690 1 0 |a EMBEDDED SYSTEMS 
690 1 0 |a MATHEMATICAL OPERATORS 
690 1 0 |a ONTOLOGY 
690 1 0 |a OPEN SYSTEMS 
690 1 0 |a CLOSED QUANTUM SYSTEM 
690 1 0 |a DYNAMICAL PROPERTIES 
690 1 0 |a ENVIRONMENT-INDUCED DECOHERENCE 
690 1 0 |a MATHEMATICAL OPERATIONS 
690 1 0 |a MATHEMATICAL PROPERTIES 
690 1 0 |a MATHEMATICAL STRUCTURE 
690 1 0 |a OPEN QUANTUM SYSTEMS 
690 1 0 |a QUANTUM TO CLASSICAL TRANSITION 
690 1 0 |a QUANTUM OPTICS 
773 0 |d Nova Science Publishers, Inc., 2014  |h pp. 387-410  |p Adv. in Quantum Syst. Res.  |z 9781629486567  |z 9781629486451  |t Advances in Quantum Systems Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84953403623&partnerID=40&md5=07aea3ca75c6434415afda11b8b7966a  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97816294_v_n_p387_Fortin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816294_v_n_p387_Fortin  |y Registro en la Biblioteca Digital 
961 |a paper_97816294_v_n_p387_Fortin  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 75673