Clique-perfectness and balancedness of some graph classes

A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contai...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonomo, F.
Otros Autores: Durán, G., Safe, M.D, Wagler, A.K
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Ltd. 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14782caa a22013697a 4500
001 PAPER-14683
003 AR-BaUEN
005 20230518204515.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84919438238 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJCMA 
100 1 |a Bonomo, F. 
245 1 0 |a Clique-perfectness and balancedness of some graph classes 
260 |b Taylor and Francis Ltd.  |c 2014 
270 1 0 |m Safe, M.D.; Instituto de Ciencias, Universidad Nacional de General SarmientoArgentina 
506 |2 openaire  |e Política editorial 
504 |a Balachandran, V., Nagavamsi, P., Pandu Rangan, C., Clique transversal and clique independence on comparability graphs (1996) Inf. Process. Lett, 58, pp. 181-184 
504 |a Baumann, S., A linear algorithm for the homogeneous decomposition of graphs (1996), Report TUM M9615, Fakultät für Mathematik, Technische Universität München, Munich, Germany; Berge, C., Färbung von Graphen, deren sämtliche beziehungsweise, deren ungerade Kreise starr sind (Zusammenfassung) (1961) Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe, 10, pp. 114-115 
504 |a Berge, C., Balanced matrices (1972) Math. Program, 2, pp. 19-31 
504 |a Berge, C., Chvátal, V., Introduction, in Topics on Perfect Graphs (1984) North-Holland Mathematics Studies, 88, pp. vii–xiv. , Berge C., Chvátal V., (eds), Noth-Holland, Amsterdam: 
504 |a Berge, C., Las Vergnas, M., Sur un théorème du type König pour hypergraphes (1970) Ann. N.Y. Acad. Sci, 175, pp. 32-40 
504 |a Bonomo, F., On subclasses and variations of perfect graphs (2005), Doctoral dissertation, Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina; Bonomo, F., Durán, G., Groshaus, M., Szwarcfiter, J.L., On clique-perfect and K-perfect graphs (2006) Ars Combin, 80, pp. 97-112 
504 |a Bonomo, F., Durán, G., Lin, M.C., Szwarcfiter, J.L., On balanced graphs (2006) Math. Program, 105, pp. 233-250 
504 |a Bonomo, F., Chudnovsky, M., Durán, G., Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs (2008) Discret. Appl. Math, 156, pp. 1058-1082 
504 |a Bonomo, F., Durán, G., Safe, M.D., Wagler, A.K., On minimal forbidden subgraph characterizations of balanced graphs (2009) Electron. Notes Discret. Math, 35, pp. 41-46 
504 |a Bonomo, F., Durán, G., Soulignac, F., Sueiro, G., Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs (2009) Discret. Appl. Math, 157, pp. 3511-3518 
504 |a Bonomo, F., Chudnovsky, M., Durán, G., Partial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs (2009) Discret. Math, 309, pp. 3485-3499 
504 |a Bonomo, F., Durán, G., Safe, M.D., Wagler, A.K., Balancedness of some subclasses of circular-arc graphs (2010) Electron. Notes Discret. Math, 36, pp. 1121-1128 
504 |a Bonomo, F., Durán, G., Safe, M.D., Wagler, A.K., Clique-perfectness of complements of line graphs (2011) Electron. Notes Discret. Math, 37, pp. 327-332 
504 |a Bonomo, F., Durán, G., Safe, M.D., Wagler, A.K., On minimal forbidden subgraph characterizations of balanced graphs (2013) Discret. Appl. Math, 161, pp. 1925-1942 
504 |a Brandstädt, A., Chepoi, V.D., Dragan, F.F., Clique r-domination and clique r-packing problems on dually chordal graphs (1997) SIAM J. Discret. Math, 10, pp. 109-127 
504 |a Buer, B., Möhring, R.H., A fast algorithm for the decomposition of graphs and posets (1983) Math. Oper. Res, 8, pp. 170-184 
504 |a Chang, M., Farber, M., Tuza, Z., Algorithmic aspects of neighbourhood numbers (1993) SIAM J. Discret. Math, 6, pp. 24-29 
504 |a Chang, M.S., Hsieh, S.Y., Chen, G.H., Dynamic programming on distance-hereditary graphs, in Algorithms and Computation (1997) Lecture Notes Computer Science, 1350, pp. 344-353. , Leong H.W., Imai H., Jain S., (eds), 8th International Symposium, ISAAC ’97, Singapore, December 17–19, 1997, Proceedings, Springer, Berlin: 
504 |a Chudnovsky, M., Cornuéjols, G.P., Liu, X., Seymour, P.D., Vušković, K., Recognizing Berge graphs (2005) Combinatorica, 25, pp. 143-186 
504 |a Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R., The strong perfect graph theorem (2006) Ann. Math, 164, pp. 51-229 
504 |a Chvátal, V., On certain polytopes associated with graphs (1975) J. Combin. Theory Ser. B, 18, pp. 138-154 
504 |a Corneil, D., Perl, Y., Stewart, L., Cographs: Recognition, applications and algorithms (1984) Congr. Numer, 43, pp. 249-258 
504 |a Corneil, D.G., Lerchs, H., Stewart Burlingham, L., Complement reducible graphs (1981) Discret. Appl. Math, 3, pp. 163-174 
504 |a Corneil, D.G., Perl, Y., Stewart, L.K., A linear recognition algorithm for cographs (1985) SIAM J. Comput, 14, pp. 926-934 
504 |a Courcelle, B., A multivariate interlace polynomial and its computation for graphs of bounded clique-width (2008) Electron. J. Comb, 15 
504 |a Courcelle, B., Makowsky, J.A., Rotics, U., Linear time solvable optimization problems on graphs of bounded clique-width (2000) Theory Comput. Syst, 33, pp. 125-150 
504 |a Cournier, A., Habib, M., A new linear algorithm for modular decomposition, in Trees in Algebra and Programming - CAAP’94 (1994) Lecture Notes Computer Science, 787, pp. 68-84. , Tison S., (ed), 19th International Colloquium, Edinburgh, UK, April 11–13, 1994, Proceedings, Springer, Berlin: 
504 |a Dahlhaus, E., Manuel, P.D., Miller, M., Maximum h-colourable subgraph problem in balanced graphs (1998) Inf. Process. Lett, 65, pp. 301-303 
504 |a Dahlhaus, E., Gustedt, J., McConnell, R.M., Efficient and practical algorithms for sequential modular decomposition (2001) J. Algorithms, 41, pp. 360-387 
504 |a Durán, G., Lin, M.C., Szwarcfiter, J.L., On clique-transversal and clique-independent sets (2002) Ann. Oper. Res, 116, pp. 71-77 
504 |a Durán, G., Lin, M.C., Mera, S., Szwarcfiter, J.L., Algorithms for clique-independent sets on subclasses of circular-arc graphs (2006) Discret. Appl. Math, 154, pp. 1783-1790 
504 |a Durán, G., Lin, M.C., Mera, S., Szwarcfiter, J.L., Algorithms for finding clique-transversals of graphs (2008) Ann. Oper. Res, 157, pp. 37-45 
504 |a Edmonds, J., Paths, trees, and flowers (1965) Can. J. Math, 17, pp. 449-467 
504 |a Egerváry, J., Matrixok kombinatorikus tulajdonságairól (1931) Mat. Fiz. Lapok, 38, pp. 16-28 
504 |a Erdős, P., Gallai, T., Tuza, Z., Covering the cliques of a graph with vertices (1992) Discret. Math, 108, pp. 279-289 
504 |a Farber, M., Characterizations of strongly chordal graphs (1983) Discret. Math, 43, pp. 173-189 
504 |a Fouquet, J.L., Giakoumakis, V., On semi-P4-sparse graphs (1997) Discret. Math, pp. 277-300 
504 |a Frick, M., Grohe, M., The complexity of first-order and monadic second-order logic revisited (2004) Ann. Pure Appl. Logic, 130, pp. 3-31 
504 |a Fulkerson, D.R., Hoffman, A.J., Oppenheim, R., On balanced matrices, in Pivoting and Extensions: In Honor of A.W. Tucker (1974) Mathematical Programming Study, 1, pp. 120-133. , Balinski M., (ed), North-Holland, Amsterdam: 
504 |a Gabow, H., Tarjan, R., Faster scaling algorithms for general graph-matching problems (1991) J. ACM, 38, pp. 815-853 
504 |a Gallai, T., Transitiv orientierbare Graphen (1967) Acta Math. Acad. Sci. Hung, 18, pp. 25-66 
504 |a Giakoumakis, V., Roussel, F., Thuillier, H., On P4-tidy graphs (1997) Discret. Math. Theor. Comput. Sci, 1, pp. 17-41 
504 |a Golumbic, M.C., Trivially perfect graphs (1978) Discret. Math, 24, pp. 105-107 
504 |a Guruswami, V., Pandu Rangan, C., Algorithmic aspects of clique-transversal and clique-independent sets (2000) Discret. Appl. Math, 100, pp. 183-202 
504 |a Hoàng, C.T., Perfect graphs (1985), Ph.D. thesis, School of Computer Science, McGill University, Montreal, Canada; Jamison, B., Olariu, S., A new class of brittle graphs (1989) Stud. Appl. Math, 81, pp. 89-92 
504 |a Jamison, B., Olariu, S., On a unique tree representation for P4-extendible graphs (1991) Discret. Appl. Math, 34, pp. 151-164 
504 |a Kőnig, D., Graphok és Matrixok (1931) Mat. Fiz. Lapok, 38, pp. 116-119 
504 |a Lee, C.M., Chang, M.S., Distance-hereditary graphs are clique-perfect (2006) Discret. Appl. Math, 154, pp. 525-536 
504 |a Lehel, J., Tuza, Z., Neighborhood perfect graphs (1986) Discret. Math, 61, pp. 93-101 
504 |a McConnell, R.M., Spinrad, J.P., Modular decomposition and transitive orientation (1999) Discret. Math, 201, pp. 189-241 
504 |a Meyniel, H., The graphs whose odd cycles have at least two chords, in Topics on Perfect Graphs (1984) North-Holland Mathematics Studies, 88, pp. 115-119. , Berge C., Chvátal V., (eds), Noth-Holland, Amsterdam: 
504 |a Olariu, S., Paw-free graphs (1988) Inf. Process. Lett, 28, pp. 53-54 
504 |a Parthasarathy, K., Ravindra, G., The strong perfect-graph conjecture is true for K1, 3-free graphs (1976) J. Combin. Theory Ser. B, 21, pp. 212-223 
504 |a Prisner, E., Hereditary clique-Helly graphs (1993) J. Combin. Math. Combin. Comput, 14, pp. 216-220 
504 |a Sandeep, R.B., Perfectly colorable graphs (2011) Inf. Process. Lett, 111, pp. 960-961 
504 |a Seinsche, D., On a property of the class of n-colorable graphs (1974) J. Combin. Theory Ser. B, 16, pp. 191-193 
504 |a Tedder, M., Corneil1, D., Habib, M., Paul, C., Simpler linear-time modular decomposition via recursive factorizing permutations, in Automata, Languages and Programming (2008) Lecture Notes Computer Science, 5125. , Aceto L., Damgård I., Goldberg L.A., Halldórsson M.M., Ingólfsdóttir A., Walukiewicz I., (eds), 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part I, Springer, Berlin: 
504 |a Tsukiyama, S., Idle, M., Ariyoshi, H., Shirakawa, Y., A new algorithm for generating all the maximal independent sets (1977) SIAM J. Comput, 6, pp. 505-517 
504 |a Tucker, A., The strong perfect graph conjecture for planar graphs (1973) Can. J. Math, 25, pp. 103-114 
504 |a Tucker, A., Coloring perfect (K4−e)-free graphs (1987) J. Combin. Theory Ser. B, 42, pp. 313-318 
504 |a West, D.B., (2001) Introduction to Graph Theory, , 2nd ed., Prentice-Hall, Upper Saddle River, NJ: 
504 |a Zambelli, G., A polynomial recognition algorithm for balanced matrices (2005) J. Combin. Theory Ser. B, 95, pp. 49-67 
520 3 |a A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contains no square submatrix of odd size with exactly two ones per row and column. In this work, we give linear-time recognition algorithms and minimal forbidden induced subgraph characterizations of clique-perfectness and balancedness of P4-tidy graphs and a linear-time algorithm for computing a maximum clique-independent set and a minimum clique-transversal set for any P4-tidy graph. We also give a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for balancedness of paw-free graphs. Finally, we show that clique-perfectness of diamond-free graphs can be decided in polynomial time by showing that a diamond-free graph is clique-perfect if and only if it is balanced. © 2014, © 2014 Taylor & Francis.  |l eng 
536 |a Detalles de la financiación: Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica, 1110797 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020100100980 
536 |a Detalles de la financiación: PICT-2012-1324 
536 |a Detalles de la financiación: PIP 112-200901-00178 
536 |a Detalles de la financiación: The authors are indebted to the referees for insightful comments, corrections, and suggestions that helped to improve this paper. The first three named authors were partially supported by UBACyT Grant 20020100100980, CONICET PIP 112-200901-00178, and ANPCyT PICT-2012-1324 (Argentina). G. Durán was also partially supported by FONDECyT Grant 1110797 and Millennium Science Institute ‘Complex Engineering Systems’ (Chile). 
593 |a CONICET and Departamento de Computación, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a CONICET, Instituto de Cálculo, and Departamento de Matemática, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Departamento de Ingeniería Industrial, FCFM, Universidad de Chile, Santiago de Chile, Chile 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Argentina 
593 |a CNRS and LIMOS, UFR Sciences et Techniques, Université Blaise Pascal, Aubiére, France 
690 1 0 |a BALANCED GRAPHS 
690 1 0 |a CLIQUE-PERFECT GRAPHS 
690 1 0 |a DIAMOND-FREE GRAPHS 
690 1 0 |a P4-TIDY GRAPHS 
690 1 0 |a PAW-FREE GRAPHS 
690 1 0 |a RECOGNITION ALGORITHMS 
690 1 0 |a CLUSTERING ALGORITHMS 
690 1 0 |a DIAMONDS 
690 1 0 |a GRAPHIC METHODS 
690 1 0 |a POLYNOMIAL APPROXIMATION 
690 1 0 |a BALANCED GRAPHS 
690 1 0 |a DIAMOND-FREE GRAPHS 
690 1 0 |a FREE GRAPHS 
690 1 0 |a PERFECT GRAPH 
690 1 0 |a RECOGNITION ALGORITHM 
690 1 0 |a GRAPH THEORY 
700 1 |a Durán, G. 
700 1 |a Safe, M.D. 
700 1 |a Wagler, A.K. 
773 0 |d Taylor and Francis Ltd., 2014  |g v. 91  |h pp. 2118-2141  |k n. 10  |p Int J Comput Math  |x 00207160  |w (AR-BaUEN)CENRE-5228  |t International Journal of Computer Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919438238&doi=10.1080%2f00207160.2014.881994&partnerID=40&md5=8c097ac0130f332b08074a5b647ddabc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/00207160.2014.881994  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00207160_v91_n10_p2118_Bonomo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207160_v91_n10_p2118_Bonomo  |y Registro en la Biblioteca Digital 
961 |a paper_00207160_v91_n10_p2118_Bonomo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75636