Are There Different Populations of Flux Ropes in the Solar Wind?

Flux ropes are twisted magnetic structures that can be detected by in-situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope populations. As such, are there different populations of flux ropes? The answer is positive and is the...

Descripción completa

Detalles Bibliográficos
Autor principal: Janvier, M.
Otros Autores: Démoulin, Pascal, Dasso, Sergio Ricardo
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Kluwer Academic Publishers 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19844caa a22012497a 4500
001 PAPER-14643
003 AR-BaUEN
005 20250305094258.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84897570577 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Janvier, M. 
245 1 4 |a Are There Different Populations of Flux Ropes in the Solar Wind? 
260 |b Kluwer Academic Publishers  |c 2014 
270 1 0 |m Janvier, M.; Department of Mathematics, University of Dundee, Dundee, DD1 4HN Scotland, United Kingdom; email: mjanvier@maths.dundee.ac.uk 
504 |a Archontis, V., Hood, A.W., A numerical model of standard to blowout jets (2013) Astrophys. J. Lett., 769, pp. L21. , doi:10.1088/2041-8205/769/2/L21 
504 |a Blanco, J.J., Rodríguez-Pacheco, J., Hidalgo, M.A., Sequeiros, J., Analysis of the heliospheric current sheet fine structure: single or multiple current sheets (2006) J. Atmos. Solar-Terr. Phys., 68, pp. 2173-2181. , doi:10.1016/j.jastp.2006.08.007 
504 |a Boursier, Y., Lamy, P., Llebaria, A., Goudail, F., Robelus, S., The ARTEMIS catalog of LASCO coronal mass ejections. Automatic recognition of transient events and Marseille inventory from synoptic maps (2009) Solar Phys., 257, pp. 125-147. , doi:10.1007/s11207-009-9370-5 
504 |a Cartwright, M.L., Moldwin, M.B., Comparison of small-scale flux rope magnetic properties to large-scale magnetic clouds: evidence for reconnection across the HCS? (2008) J. Geophys. Res., 113 (A12), p. 9105. , doi:10.1029/2008JA013389 
504 |a Cartwright, M.L., Moldwin, M.B., Heliospheric evolution of solar wind small-scale magnetic flux ropes (2010) J. Geophys. Res., 115. , A08102, doi:10.1029/2009JA014271 
504 |a Cartwright, M.L., Moldwin, M.B., Reply to comment by H.Q. Feng, D.J. Wu, and J.K. Chao on Comparison of small-scale flux rope magnetic properties to large-scale magnetic clouds: evidence for reconnection across the HCS (2010) J. Geophys. Res., 115 (A14). , A10110, doi:10.1029/2010JA015794 
504 |a Chen, Y., Li, X., Song, H.Q., Shi, Q.Q., Feng, S.W., Xia, L.D., Intrinsic instability of coronal streamers (2009) Astrophys. J., 691, pp. 1936-1942. , doi:10.1088/0004-637X/691/2/1936 
504 |a Chen, C., Wang, Y., Shen, C., Ye, P., Zhang, J., Wang, S., Statistical study of coronal mass ejection source locations: 2. Role of active regions in CME production (2011) J. Geophys. Res., 116, p. 12108. , doi:10.1029/2011JA016844 
504 |a Cremades, H., Bothmer, V., On the three-dimensional configuration of coronal mass ejections (2004) Astron. Astrophys., 422, pp. 307-322. , doi:10.1051/0004-6361:20035776 
504 |a Cremades, H., Bothmer, V., Tripathi, D., Properties of structured coronal mass ejections in solar cycle 23 (2006) Adv. Space Res., 38, pp. 461-465. , doi:10.1016/j.asr.2005.01.095 
504 |a Dahlburg, R.B., Karpen, J.T., A triple current sheet model for adjoining coronal helmet streamers (1995) J. Geophys. Res., 100, pp. 23489-23498. , doi:10.1029/95JA02496 
504 |a Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M., Large scale MHD properties of interplanetary magnetic clouds (2005) Adv. Space Res., 35, pp. 711-724. , doi:10.1016/j.asr.2005.02.096 
504 |a Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., A new model-independent method to compute magnetic helicity in magnetic clouds (2006) Astron. Astrophys., 455, pp. 349-359. , doi:10.1051/0004-6361:20064806 
504 |a Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H., Progressive transformation of a flux rope to an ICME (2007) Solar Phys., 244, pp. 115-137. , doi:10.1007/s11207-007-9034-2 
504 |a Démoulin, P., Why do temperature and velocity have different relationships in the solar wind and in interplanetary coronal mass ejections? (2009) Solar Phys., 257, pp. 169-184. , doi:10.1007/s11207-009-9338-5 
504 |a Einaudi, G., Chibbaro, S., Dahlburg, R.B., Velli, M., Plasmoid formation and acceleration in the solar streamer belt (2001) Astrophys. J., 547, pp. 1167-1177. , doi:10.1086/318400 
504 |a Elliott, H.A., McComas, D.J., Schwadron, N.A., Gosling, J.T., Skoug, R.M., Gloeckler, G., Zurbuchen, T.H., An improved expected temperature formula for identifying interplanetary coronal mass ejections (2005) J. Geophys. Res., 110. , A04103, doi:10.1029/2004JA010794 
504 |a Feng, H.Q., Wu, D.J., Chao, J.K., Size and energy distributions of interplanetary magnetic flux ropes (2007) J. Geophys. Res., 112. , A02102, doi:10.1029/2006JA011962 
504 |a Feng, H.Q., Wu, D.J., Chao, J.K., Comment on "Comparison of small-scale flux rope magnetic properties to large-scale magnetic clouds: evidence for reconnection across the HCS?" by M.L. Cartwright and M.B. Moldwin (2010) J. Geophys. Res., 115 (A14). , A10109, doi:10.1029/2010JA015588 
504 |a Feng, H.Q., Wu, D.J., Lin, C.C., Chao, J.K., Lee, L.C., Lyu, L.H., Interplanetary small- and intermediate-sized magnetic flux ropes during 1995 - 2005 (2008) J. Geophys. Res., 113 (A12), p. 12105. , doi:10.1029/2008JA013103 
504 |a Fermo, R.L., Drake, J.F., Swisdak, M., A statistical model of magnetic islands in a current layer (2010) Phys. Plasmas, 17 (1). , 010702, doi:10.1063/1.3286437 
504 |a Gopalswamy, N., Mäkelä, P., Akiyama, S., Xie, H., Yashiro, S., Reinard, A.A., The solar connection of enhanced heavy ion charge states in the interplanetary medium: implications for the flux-rope structure of CMEs (2013) Solar Phys., 284, pp. 17-46. , doi:10.1007/s11207-012-0215-2 
504 |a Green, L.M., López Fuentes, M.C., Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Culhane, J.L., The magnetic helicity budget of a cme-prolific active region (2002) Solar Phys., 208, pp. 43-68. , doi:10.1023/A:1019658520033 
504 |a Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E., Global and local expansion of magnetic clouds in the inner heliosphere (2010) Astron. Astrophys., 509, pp. A39. , doi:10.1051/0004-6361/200912375 
504 |a Howard, T.A., Nandy, D., Koepke, A.C., Kinematic properties of solar coronal mass ejections: correction for projection effects in spacecraft coronagraph measurements (2008) J. Geophys. Res., 113, p. 1104. , doi:10.1029/2007JA012500 
504 |a Janvier, M., Démoulin, P., Dasso, S., Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation (2013) Astron. Astrophys., 556, pp. A50. , doi:10.1051/0004-6361/201321442 
504 |a Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M., Properties of interplanetary coronal mass ejections at one AU during 1995 - 2004 (2006) Solar Phys., 239, pp. 393-436. , doi:10.1007/s11207-006-0133-2 
504 |a Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T., Observations of ICMEs and ICME-like solar wind structures from 2007 - 2010 using near-earth and STEREO observations (2012) Solar Phys., 281, pp. 391-409. , doi:10.1007/s11207-012-9957-0 
504 |a Lepping, R.P., Burlaga, L.F., Jones, J.A., Magnetic field structure of interplanetary magnetic clouds at 1 AU (1990) J. Geophys. Res., 95, pp. 11957-11965. , doi:10.1029/JA095iA08p11957 
504 |a Lepping, R.P., Wu, C.C., Selection effects in identifying magnetic clouds and the importance of the closest approach parameter (2010) Ann. Geophys., 28, pp. 1539-1552. , doi:10.5194/angeo-28-1539-2010 
504 |a Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Automatic identification of magnetic clouds and cloud-like regions at 1 AU: occurrence rate and other properties (2005) Ann. Geophys., 23, pp. 2687-2704. , doi:10.5194/angeo-23-2687-2005 
504 |a Linton, M.G., Moldwin, M.B., A comparison of the formation and evolution of magnetic flux ropes in solar coronal mass ejections and magnetotail plasmoids (2009) J. Geophys. Res., 114 (A13). , A00B09, doi:10.1029/2008JA013660 
504 |a Liu, C., Deng, N., Liu, R., Ugarte-Urra, I., Wang, S., Wang, H., A standard-to-blowout jet (2011) Astrophys. J. Lett., 735, pp. L18. , doi:10.1088/2041-8205/735/1/L18 
504 |a Loureiro, N.F., Schekochihin, A.A., Cowley, S.C., Instability of current sheets and formation of plasmoid chains (2007) Phys. Plasmas, 14 (10). , 100703, doi:10.1063/1.2783986 
504 |a Loureiro, N.F., Samtaney, R., Schekochihin, A.A., Uzdensky, D.A., Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas (2012) Phys. Plasmas, 19 (4). , 042303, doi:10.1063/1.3703318 
504 |a Lundquist, S., Magnetohydrostatic fields (1950) Ark. Fys., 2, pp. 361-365 
504 |a Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K., Solar cycle-dependent helicity transport by magnetic clouds (2005) J. Geophys. Res., 110. , A08107, doi:10.1029/2005JA011137 
504 |a Mäkelä, P., Gopalswamy, N., Xie, H., Mohamed, A.A., Akiyama, S., Yashiro, S., Coronal hole influence on the observed structure of interplanetary CMEs (2013) Solar Phys., 284, pp. 59-75. , doi:10.1007/s11207-012-0211-6 
504 |a Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C., Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed (2005) Astron. Astrophys., 434, pp. 725-740. , doi:10.1051/0004-6361:20041079 
504 |a Moldwin, M.B., Ford, S., Lepping, R., Slavin, J., Szabo, A., Small-scale magnetic flux ropes in the solar wind (2000) Geophys. Res. Lett., 27, pp. 57-60. , doi:10.1029/1999GL010724 
504 |a Moore, R.L., Cirtain, J.W., Sterling, A.C., Falconer, D.A., Dichotomy of solar coronal jets: standard jets and blowout jets (2010) Astrophys. J., 720, pp. 757-770. , doi:10.1088/0004-637X/720/1/757 
504 |a Moore, R.L., Sterling, A.C., Falconer, D.A., Robe, D., The cool component and the dichotomy, lateral expansion, and axial rotation of solar X-ray jets (2013) Astrophys. J., 769, p. 134. , doi:10.1088/0004-637X/769/2/134 
504 |a Olmedo, O., Zhang, J., Wechsler, H., Poland, A., Borne, K., Automatic detection and tracking of coronal mass ejections in coronagraph time series (2008) Solar Phys., 248, pp. 485-499. , doi:10.1007/s11207-007-9104-5 
504 |a Pariat, E., Antiochos, S.K., DeVore, C.R., Three-dimensional modeling of quasi-homologous solar jets (2010) Astrophys. J., 714, pp. 1762-1778. , doi:10.1088/0004-637X/714/2/1762 
504 |a Parnell, C.E., DeForest, C.E., Hagenaar, H.J., Johnston, B.A., Lamb, D.A., Welsch, B.T., A power-law distribution of solar magnetic fields over more than five decades in flux (2009) Astrophys. J., 698, pp. 75-82. , doi:10.1088/0004-637X/698/1/75 
504 |a Richardson, I.G., Cane, H.V., Near-earth interplanetary coronal mass ejections during solar cycle 23 (1996 - 2009): catalog and summary of properties (2010) Solar Phys., 264, pp. 189-237. , doi:10.1007/s11207-010-9568-6 
504 |a Robbrecht, E., Berghmans, D., van der Linden, R.A.M., Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant? (2009) Astrophys. J., 691, pp. 1222-1234. , doi:10.1088/0004-637X/691/2/1222 
504 |a Rouillard, A.P., Relating white light and in situ observations of coronal mass ejections: a review (2011) J. Atmos. Solar-Terr. Phys., 73, pp. 1201-1213. , doi:10.1016/j.jastp.2010.08.015 
504 |a Rouillard, A.P., Davies, J.A., Lavraud, B., Forsyth, R.J., Savani, N.P., Bewsher, D., Brown, D.S., Eyles, C.J., Intermittent release of transients in the slow solar wind: 1. Remote sensing observations (2010) J. Geophys. Res., 115, p. 4103. , doi:10.1029/2009JA014471 
504 |a Rouillard, A.P., Sheeley Jr., N.R., Cooper, T.J., Davies, J.A., Lavraud, B., Kilpua, E.K.J., Skoug, R.M., Sauvaud, J.-A., The solar origin of small interplanetary transients (2011) Astrophys. J., 734, p. 7. , doi:10.1088/0004-637X/734/1/7 
504 |a Ruffenach, A., Lavraud, B., Owens, M.J., Sauvaud, J.-A., Savani, N.P., Rouillard, A.P., Démoulin, P., Galvin, A.B., Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation (2012) J. Geophys. Res., 117 (A16). , A09101, doi:10.1029/2012JA017624 
504 |a Schrijver, C.J., Eruptions from solar ephemeral regions as an extension of the size distribution of coronal mass ejections (2010) Astrophys. J., 710, pp. 1485-1490 
504 |a Sheeley Jr., N.R., Rouillard, A.P., Tracking streamer blobs into the heliosphere (2010) Astrophys. J., 715, pp. 300-309. , doi:10.1088/0004-637X/715/1/300 
504 |a Sheeley Jr., N.R., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.J., Biesecker, D.A., Measurements of flow speeds in the corona between 2 and 30 R sub sun (1997) Astrophys. J., 484, p. 472. , doi:10.1086/304338 
504 |a Sheeley Jr., N.R., Lee, D.D.-H., Casto, K.P., Wang, Y.-M., Rich, N.B., The structure of streamer blobs (2009) Astrophys. J., 694, pp. 1471-1480. , doi:10.1088/0004-637X/694/2/1471 
504 |a Smith, E.J., The heliospheric current sheet (2001) J. Geophys. Res., 106, pp. 15819-15832. , doi:10.1029/2000JA000120 
504 |a Song, H.Q., Chen, Y., Liu, K., Feng, S.W., Xia, L.D., Quasi-periodic releases of streamer blobs and velocity variability of the slow solar wind near the Sun (2009) Solar Phys., 258, pp. 129-140. , doi:10.1007/s11207-009-9411-0 
504 |a Tripathi, D., Bothmer, V., Cremades, H., The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions (2004) Astron. Astrophys., 422, pp. 337-349. , doi:10.1051/0004-6361:20035815 
504 |a Uzdensky, D.A., Loureiro, N.F., Schekochihin, A.A., Fast magnetic reconnection in the plasmoid-dominated regime (2010) Phys. Rev. Lett., 105 (23). , 235002, doi:10.1103/PhysRevLett.105.235002 
504 |a Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y., How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs (2013) Solar Phys., 284, pp. 179-201. , doi:10.1007/s11207-012-0084-8 
504 |a Wang, Y., Zhang, J., Shen, C., An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations (2009) J. Geophys. Res., 114 (A13), p. 10104. , doi:10.1029/2009JA014360 
504 |a Wang, Y.-M., Sheeley, N.R., Socker, D.G., Howard, R.A., Rich, N.B., The dynamical nature of coronal streamers (2000) J. Geophys. Res., 105, pp. 25133-25142. , doi:10.1029/2000JA000149 
504 |a Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S., Statistical study of coronal mass ejection source locations: understanding CMEs viewed in coronagraphs (2011) J. Geophys. Res., 116, p. 4104. , doi:10.1029/2010JA016101 
504 |a Wu, D.J., Feng, H.Q., Chao, J.K., Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity (2008) Astron. Astrophys., 480, pp. L9-L12. , doi:10.1051/0004-6361:20079173 
504 |a Yashiro, S., Michalek, G., Gopalswamy, N., A comparison of coronal mass ejections identified by manual and automatic methods (2008) Ann. Geophys., 26, pp. 3103-3112. , doi:10.5194/angeo-26-3103-2008 
504 |a Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A., A catalog of white light coronal mass ejections observed by the SOHO spacecraft (2004) J. Geophys. Res., 109, p. 7105. , doi:10.1029/2003JA010282 
504 |a Zhang, J., Wang, Y., Liu, Y., Statistical properties of solar active regions obtained from an automatic detection system and the computational biases (2010) Astrophys. J., 723, pp. 1006-1018. , doi:10.1088/0004-637X/723/2/1006 
506 |2 openaire  |e Política editorial 
520 3 |a Flux ropes are twisted magnetic structures that can be detected by in-situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope populations. As such, are there different populations of flux ropes? The answer is positive and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in-situ data for the four lists were fitted with the same cylindrical force-free field model, which provides an estimate of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a broad dynamic range, we went beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations across the radius range. By doing so, we found that small flux ropes with radius R<0.1 AU have a steep power-law distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distribution. Next, from four CME catalogs, we estimated the expected flux-rope frequency per year at 1 AU. We found that the predicted numbers are similar to the frequencies of MCs observed in-situ. However, we also found that small flux ropes are at least ten times too abundant to correspond to CMEs, even to narrow ones. Investigating the different possible scenarios for the origin of these small flux ropes, we conclude that these twisted structures can be formed by blowout jets in the low corona or in coronal streamers. © 2014 Springer Science+Business Media Dordrecht.  |l eng 
536 |a Detalles de la financiación: Abdus Salam International Centre for Theoretical Physics 
536 |a Detalles de la financiación: UBACyT 20020120100220 
536 |a Detalles de la financiación: Abdus Salam International Centre for Theoretical Physics 
536 |a Detalles de la financiación: AXA Research Fund 
536 |a Detalles de la financiación: Acknowledgements The present work was partially funded by a contract from the AXA Research Fund (MJ) and also supported by the Argentinean grant UBACyT 20020120100220 (SD) and by a one-month invitation of SD by the Paris Observatory. SD is member of the Carrera del Investigador Científico, CONICET. SD acknowledges support from the Abdus Salam International Centre for Theoretical Physics (ICTP), as provided in the framework of his regular associateship. 
593 |a Department of Mathematics, University of Dundee, Dundee, DD1 4HN Scotland, United Kingdom 
593 |a Observatoire de Paris, LESIA, UMR 8109 (CNRS), 92195 Meudon Principal Cedex, France 
593 |a Instituto de Astronomía y Física del Espacio, UBA-CONICET, CC. 67, Suc. 28, 1428 Buenos Aires, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina 
690 1 0 |a CORONAL MASS EJECTIONS 
690 1 0 |a CORONAL MASS EJECTIONS, INTERPLANETARY 
690 1 0 |a MAGNETIC FIELDS, INTERPLANETARY 
690 1 0 |a SOLAR WIND 
700 1 |a Démoulin, Pascal 
700 1 |a Dasso, Sergio Ricardo 
773 0 |d Kluwer Academic Publishers, 2014  |g v. 289  |h pp. 2633-2652  |k n. 7  |p Sol. Phys.  |x 00380938  |w (AR-BaUEN)CENRE-2238  |t Solar Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897570577&doi=10.1007%2fs11207-014-0486-x&partnerID=40&md5=2ddd98ae28131456710bf9013a774cbd  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11207-014-0486-x  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00380938_v289_n7_p2633_Janvier  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v289_n7_p2633_Janvier  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00380938_v289_n7_p2633_Janvier  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI