Identifying the principal modes of variation in human thoracic aorta morphology

Purpose: Diagnosis and management of thoracic aorta (TA) disease demand the assessment of accurate quantitative information of the aortic anatomy. We investigated the principal modes of variation in aortic 3-dimensional geometry paying particular attention to the curvilinear portion. Materials and M...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Casciaro, M.E
Otros Autores: Craiem, D., Chironi, G., Graf, S., Macron, L., Mousseaux, E., Simon, A., Armentano, R.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Lippincott Williams and Wilkins 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13653caa a22013697a 4500
001 PAPER-14629
003 AR-BaUEN
005 20230518204511.0
008 170725s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84903791816 
024 7 |2 cas  |a calcium, 7440-70-2, 14092-94-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JTIME 
100 1 |a Casciaro, M.E. 
245 1 0 |a Identifying the principal modes of variation in human thoracic aorta morphology 
260 |b Lippincott Williams and Wilkins  |c 2014 
270 1 0 |m Craiem, D.; Facultad de Ingeniería, Ciencias Exactas y Naturales (FICEN), Universidad Favaloro, Solis 453, CP 1078, Ciudad de Buenos Aires, Argentina; email: dcraiem@favaloro.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Greenland, P., Alpert, J.S., Beller, G.A., 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: A report of the American college of cardiology foundation/American heart association task force on practice guidelines developed in collaboration with the American society of echocardiography, American society of nuclear cardiology, society of atherosclerosis imaging and prevention (2010) J Am Coll Cardiol., 56, pp. e50-e103. , society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, and society for cardiovascular magnetic resonance 
504 |a Wong, N.D., Gransar, H., Shaw, L., Thoracic aortic calcium versus coronary artery calcium for the prediction of coronary heart disease and cardiovascular disease events (2009) JACC Cardiovasc Imaging, 2, pp. 319-326 
504 |a Craiem, D., Chironi, G., Redheuil, A., Aging impact on thoracic aorta 3D morphometry in intermediate-risk subjects: Looking beyond coronary arteries with non-contrast cardiac CT (2012) Ann Biomed Eng., 40, pp. 1028-1038 
504 |a Demertzis, S., Hurni, S., Stalder, M., Aortic arch morphometry in living humans (2010) J Anat., 217, pp. 588-596 
504 |a Elefteriades, J.A., Farkas, E.A., Thoracic aortic aneurysm clinically pertinent controversies and uncertainties (2010) J Am Coll Cardiol., 55, pp. 841-857 
504 |a Hiratzka, L.F., Bakris, G.L., Beckman, J.A., 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. A report of the American college of cardiology foundation/American heart association task force on practice guidelines, American association for thoracic surgery, American college of radiology, American stroke association (2010) J Am Coll Cardiol., 55, pp. e27-e129. , society of cardiovascular anesthesiologists, society for cardiovascular angiography and interventions, society of interventional radiology, society of thoracic surgeons, and society for vascular medicine 
504 |a Rousseau, H., Chabbert, V., Maracher, M.A., The importance of imaging assessment before endovascular repair of thoracic aorta (2009) Eur J Vasc Endovasc Surg., 38, pp. 408-421 
504 |a Worz, S., Von Tengg-Kobligk, H., Henninger, V., 3-D quantification of the aortic arch morphology in 3-D CTA data for endovascular aortic repair (2010) IEEE Trans Biomed Eng., 57, pp. 2359-2368 
504 |a Gyongyosi, M., Yang, P., Khorsand, A., Glogar, D., Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events (2000) Journal of the American College of Cardiology, 35 (6), pp. 1580-1589. , DOI 10.1016/S0735-1097(00)00570-2, PII S0735109700005702 
504 |a Brozzi, N.A., Roselli, E.E., Endovascular therapy for thoracic aortic aneurysms: State of the art in 2012 (2012) Curr Treat Options Cardiovasc Med., 14, pp. 149-163 
504 |a Monahan, T.S., Schneider, D.B., Fenestrated and branched stent grafts for repair of complex aortic aneurysms (2009) Semin Vasc Surg., 22, pp. 132-139 
504 |a Ueda, T., Fleischmann, D., Rubin, G.D., Imaging of the thoracic aorta before and after stent-graft repair of aneurysms and dissections (2008) Semin Thorac Cardiovasc Surg., 20, pp. 348-357 
504 |a Liu, X., Pu, F., Fan, Y., A numerical study on the flow of blood and the transport of LDL in the human aorta: The physiological significance of the helical flow in the aortic arch (2009) Am J Physiol Heart Circ Physiol., 297, pp. H163-H170 
504 |a Frydrychowicz, A., Berger, A., Munoz Del-Rio, A., Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla (2012) Eur Radiol., 22, pp. 1122-1130 
504 |a Malek, A.M., Alper, S.L., Izumo, S., Hemodynamic shear stress and its role in atherosclerosis (1999) JAMA, 282, pp. 2035-2042 
504 |a Zhu, H., Ding, Z., Piana, R.N., Cataloguing the geometry of the human coronary arteries: A potential tool for predicting risk of coronary artery disease (2009) Int J Cardiol., 135, pp. 43-52 
504 |a Bryan, R., Mohan, P.S., Hopkins, A., Statistical modelling of the whole human femur incorporating geometric and material properties (2010) Med Eng Phys., 32, pp. 57-65 
504 |a Ou, P., Celermajer, D.S., Mousseaux, E., Giron, A., Aggoun, Y., Szezepanski, I., Sidi, D., Bonnet, D., Vascular Remodeling After "Successful" Repair of Coarctation. Impact of Aortic Arch Geometry (2007) Journal of the American College of Cardiology, 49 (8), pp. 883-890. , DOI 10.1016/j.jacc.2006.10.057, PII S0735109706030129 
504 |a Greenland, P., Alpert, J.S., Beller, G.A., 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines (2010) Circulation, 122, pp. e584-e636 
504 |a Chironi, G., Orobinskaia, L., Megnien, J.L., Early thoracic aorta enlargement in asymptomatic individuals at risk for cardiovascular disease: Determinant factors and clinical implication (2010) J Hypertens., 28, pp. 2134-2138 
504 |a Hotelling, H., Analysis of a complex of statistical variables into principal components (1933) J Educ Psychol., 24, pp. 417-441 
504 |a Redheuil, A., Yu, W.C., Mousseaux, E., Age-related changes in aortic arch geometry: Relationship with proximal aortic function and left ventricular mass and remodeling (2011) J Am Coll Cardiol., 58, pp. 1262-1270 
504 |a Cootes, T.F., Taylor, C.J., Cooper, D.H., Active shape models-their training and application (1995) Comput Vis Image Underst., 61, pp. 38-59 
504 |a Craiem, D., Casciaro, M.E., Graf, S., Effects of aging on thoracic aorta size and shape: A non-contrast CT study (2012) Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 4986-4989. , San Diego, USA. August 28, San Diego, USA. August 28 
504 |a Craiem, D., Chironi, G., Casciaro, M.E., Three-dimensional evaluation of thoracic aorta enlargement and unfolding in hypertensive men using non-contrast computed tomography (2013) J Hum Hypertens., 27, pp. 504-509 
504 |a O'Rourke, M., Farnsworth, A., O'Rourke, J., Aortic dimensions and stiffness in normal adults (2008) JACC Cardiovasc Imaging, 1, pp. 749-751 
504 |a Sugawara, J., Hayashi, K., Yokoi, T., Age-associated elongation of the ascending aorta in adults (2008) JACC Cardiovasc Imaging, 1, pp. 739-748 
504 |a Ou, P., Bonnet, D., Auriacombe, L., Pedroni, E., Balleux, F., Sidi, D., Mousseaux, E., Late systemic hypertension and aortic arch geometry after successful repair of coarctation of the aorta (2004) European Heart Journal, 25 (20), pp. 1853-1859. , DOI 10.1016/j.ehj.2004.07.021, PII S0195668X0400507X 
504 |a Ou, P., Celermajer, D.S., Raisky, O., Angular (Gothic) aortic arch leads to enhanced systolic wave reflection, central aortic stiffness, and increased left ventricular mass late after aortic coarctation repair: Evaluation with magnetic resonance flow mapping (2008) J Thorac Cardiovasc Surg., 135, pp. 62-68 
504 |a Tops, L.F., Wood, D.A., Delgado, V., Schuijf, J.D., Mayo, J.R., Pasupati, S., Lamers, F.P.L., Bax, J.J., Noninvasive Evaluation of the Aortic Root With Multislice Computed Tomography. Implications for Transcatheter Aortic Valve Replacement (2008) JACC: Cardiovascular Imaging, 1 (3), pp. 321-330. , DOI 10.1016/j.jcmg.2007.12.006, PII S1936878X08000314 
504 |a Kurugol, S., San Jose-Estepar, R., Ross, J., Aorta segmentation with a 3D level set approach and quantification of aortic calcifications in non-contrast chest CT (2012) Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 2343-2346. , San Diego, USA. August 28 
520 3 |a Purpose: Diagnosis and management of thoracic aorta (TA) disease demand the assessment of accurate quantitative information of the aortic anatomy. We investigated the principal modes of variation in aortic 3-dimensional geometry paying particular attention to the curvilinear portion. Materials and Methods: Images were obtained from extended noncontrast multislice computed tomography scans, originally intended for coronary calcium assessment. The ascending, arch, and descending aortas of 500 asymptomatic patients (57±9 y, 81% male) were segmented using a semiautomated algorithm that sequentially inscribed circles inside the vessel cross-section. Axial planes were used for the descending aorta, whereas oblique reconstructions through a toroid path were required for the arch. Vessel centerline coordinates and the corresponding diameter values were obtained. Twelve size and shape geometric parameters were calculated to perform a principal component analysis. Results: Statistics revealed that the geometric variability of the TA was successfully explained using 3 factors that account for ~80% of total variability. Averaged aortas were reconstructed varying each factor in 5 intervals. Analyzing the parameter loadings for each principal component, the dominant contributors were interpreted as vessel size (46%), arch unfolding (22%), and arch symmetry (12%). Variables such as age, body size, and risk factors did not substantially modify the correlation coefficients, although some particular differences were observed with sex. Conclusions: We conclude that vessel size, arch unfolding, and symmetry form the basis for characterizing the variability of TA morphology. The numerical data provided in this study as supplementary material can be exploited to accurately reconstruct the curvilinear shape of normal TAs. Copyright © 2014 by Lippincott Williams & Wilkins.  |l eng 
593 |a Facultad de Ingeniería, Ciencias Exactas y Naturales (FICEN), Universidad Favaloro, Solis 453, CP 1078, Ciudad de Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Centre de Médecine Préventive Cardiovasculaire, Argentina 
593 |a Département de Radiologie Cardiovasculaire, Hôpital Européen Georges Pompidou, France 
593 |a APHP, Paris Descartes University, INSERM U970, Paris, France 
690 1 0 |a 3-DIMENSIONAL ARTERIAL MODELING 
690 1 0 |a AORTIC ARCH 
690 1 0 |a NONCONTRAST MULTISLICE COMPUTED TOMOGRAPHY 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a CALCIUM 
690 1 0 |a ADULT 
690 1 0 |a AGED 
690 1 0 |a AORTA ARCH 
690 1 0 |a AORTA DISEASE 
690 1 0 |a ARTICLE 
690 1 0 |a ASCENDING AORTA 
690 1 0 |a DESCENDING AORTA 
690 1 0 |a FEMALE 
690 1 0 |a GEOMETRY 
690 1 0 |a HUMAN 
690 1 0 |a MAJOR CLINICAL STUDY 
690 1 0 |a MALE 
690 1 0 |a MORPHOLOGY 
690 1 0 |a MULTIDETECTOR COMPUTED TOMOGRAPHY 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a RISK FACTOR 
690 1 0 |a THORACIC AORTA 
690 1 0 |a ALGORITHM 
690 1 0 |a AORTA DISEASE 
690 1 0 |a BODY SURFACE 
690 1 0 |a IMAGE PROCESSING 
690 1 0 |a MIDDLE AGED 
690 1 0 |a PATHOLOGY 
690 1 0 |a RADIOGRAPHY 
690 1 0 |a RETROSPECTIVE STUDY 
690 1 0 |a THORACIC AORTA 
690 1 0 |a VERY ELDERLY 
690 1 0 |a ADULT 
690 1 0 |a AGED 
690 1 0 |a AGED, 80 AND OVER 
690 1 0 |a ALGORITHMS 
690 1 0 |a AORTA, THORACIC 
690 1 0 |a AORTIC DISEASES 
690 1 0 |a BODY SURFACE AREA 
690 1 0 |a FEMALE 
690 1 0 |a HUMANS 
690 1 0 |a IMAGE PROCESSING, COMPUTER-ASSISTED 
690 1 0 |a MALE 
690 1 0 |a MIDDLE AGED 
690 1 0 |a MULTIDETECTOR COMPUTED TOMOGRAPHY 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a RETROSPECTIVE STUDIES 
700 1 |a Craiem, D. 
700 1 |a Chironi, G. 
700 1 |a Graf, S. 
700 1 |a Macron, L. 
700 1 |a Mousseaux, E. 
700 1 |a Simon, A. 
700 1 |a Armentano, R.L. 
773 0 |d Lippincott Williams and Wilkins, 2014  |g v. 29  |h pp. 224-232  |k n. 4  |x 08835993  |t J. Thorac. Imaging 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903791816&doi=10.1097%2fRTI.0000000000000060&partnerID=40&md5=c3da8fe1a34ea5ce86b10316f92ec988  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1097/RTI.0000000000000060  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08835993_v29_n4_p224_Casciaro  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08835993_v29_n4_p224_Casciaro  |y Registro en la Biblioteca Digital 
961 |a paper_08835993_v29_n4_p224_Casciaro  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75582