Controllability of schrödinger equation with a nonlocal term

This paper is concerned with the internal distributed control problem for the 1D Schrödinger equation, i ut(x,t) =-uxx+α (x) u+m(u) u, that arises in quantum semiconductor models. Here m(u) is a non local Hartree-type nonlinearity stemming from the coupling with the 1D Poisson equation, and α(x) is...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: De Leo, M.
Otros Autores: Sánchez Fernández De La Vega, C., Rial, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04777caa a22005297a 4500
001 PAPER-14597
003 AR-BaUEN
005 20230518204509.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84893978200 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ECOVF 
100 1 |a De Leo, M. 
245 1 0 |a Controllability of schrödinger equation with a nonlocal term 
260 |c 2014 
270 1 0 |m Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, (1613) Los Polvorines, Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Cazenave, T., Semilinear Schrödinger?equations (2003) AMS 
504 |a De Leo, M., On the existence of ground states for nonlinear Schrödinger-Poisson equation (2010) Nonlinear Anal., 73, pp. 979-986 
504 |a De Leo, M., Rial, D., Well-posedness and smoothing effect of nonlinear Schrödinger-Poisson equation (2007) J. Math. Phys., 48, pp. 093509-094115 
504 |a Harkness, G.K., Oppo, G.-L., Benkler, E., Kreuzer, M., Neubecker, R., Tschudi, T., Fourier space control in an LCLV feedback system (1999) Journal of Optics B: Quantum and Semiclassical Optics, 1 (1), pp. 177-182. , PII S1464426699960123 
504 |a Illner, R., Lange, H., Teismann, H., A note on 33 of the exact internal control of nonlinear schrödinger?Equations (2003) Quantum Control: Mathematical and Numerical Challenges, 33, pp. 127-136. , CRM Proc. Lect. Notes 
504 |a Illner, R., Lange, H., Teismann, H., Limitations on the control of schrödinger equations (2006) ESAIM: COCV, 12, pp. 615-635 
504 |a Kato, T., (1995) Perturbation Theory for Linear Operators, , Springer 
504 |a Markowich, P., Ringhofer, C., Schmeiser, C., (1990) Semiconductor Equations, , Springer, Vienna 
504 |a McDonald, G.S., Firth, W.J., Spatial solitary-wave optical memory (1990) J. Optical Soc. America B, 7, pp. 1328-1335 
504 |a Reed, M., Simon, B., Methods of modern math. Phys (1975) Fourier Analysis, Self-Adjointness, 2. , Academic Press 
504 |a Rosier, L., Zhang, B., Exact boundary controllability of the nonlinear Schrödinger equation (2009) J. Differ. Equ., 246, pp. 4129-4153 
504 |a Simon, B., Phase space analysis of simple scattering systems: Extensions of some work of Enss (1979) Duke Math. J., 46, pp. 119-168 
504 |a Zuazua, E., Remarks on the controllability of the Schrödinger?equation (2003) Quantum Control: Mathematical and Numerical Challenges, 33, pp. 193-211. , CRM Proc. Lect. Notes 
520 3 |a This paper is concerned with the internal distributed control problem for the 1D Schrödinger equation, i ut(x,t) =-uxx+α (x) u+m(u) u, that arises in quantum semiconductor models. Here m(u) is a non local Hartree-type nonlinearity stemming from the coupling with the 1D Poisson equation, and α(x) is a regular function with linear growth at infinity, including constant electric fields. By means of both the Hilbert Uniqueness Method and the contraction mapping theorem it is shown that for initial and target states belonging to a suitable small neighborhood of the origin, and for distributed controls supported outside of a fixed compact interval, the model equation is controllable. Moreover, it is shown that, for distributed controls with compact support, the exact controllability problem is not possible. © 2014 EDP Sciences, SMAI.  |l eng 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, (1613) Los Polvorines, Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Ciudad Universitaria, Departamento de Matemática, Pabellón I (1428) Buenos Aires, Argentina 
690 1 0 |a CONSTANT ELECTRIC FIELD 
690 1 0 |a HARTREE POTENTIAL 
690 1 0 |a INTERNAL CONTROLLABILITY 
690 1 0 |a NONLINEAR SCHRÖDINGER-POISSON 
700 1 |a Sánchez Fernández De La Vega, C. 
700 1 |a Rial, D. 
773 0 |d 2014  |g v. 20  |h pp. 23-41  |k n. 1  |p Control Optimisation Calc. Var.  |x 12928119  |t ESAIM - Control, Optimisation and Calculus of Variations 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893978200&doi=10.1051%2fcocv%2f2013052&partnerID=40&md5=0e94016ce9ff70e1f058fee9ad9b9b5e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1051/cocv/2013052  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_12928119_v20_n1_p23_DeLeo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_12928119_v20_n1_p23_DeLeo  |y Registro en la Biblioteca Digital 
961 |a paper_12928119_v20_n1_p23_DeLeo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75550