Synthesis, characterization and photocatalytic activity of 1D TiO<inf>2</inf> nanostructures

Nanowire/nanorod TiO<inf>2</inf> structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO<inf>2</inf> nanopowders. The first precursor was TiO<inf>2</inf> obtained by the sol-gel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cabrera, J.
Otros Autores: Alarcón, H., López, A., Candal, R., Acosta, D., Rodriguez, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: IWA Publishing 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Nanowire/nanorod TiO<inf>2</inf> structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO<inf>2</inf> nanopowders. The first precursor was TiO<inf>2</inf> obtained by the sol-gel process (SG-TiO<inf>2</inf>); the second was the well-known commercial TiO<inf>2</inf> P-25 (P25-TiO<inf>2</inf>). Anatase-like 1D TiO<inf>2</inf> nanostructures were obtained in both cases. The one-dimensional (1D) nanostructures synthesized from SG-TiO<inf>2</inf> powders turned into rod-like nanostructures after annealing at 400 °C for 2 h. Conversely, the nanostructures synthesized from P25-TiO<inf>2</inf> preserved the tubular structure after annealing, displaying a higher Brunauer-Emmett-Teller surface area than the first system (279 and 97 m2/g, respectively). Despite the higher surface area shown by the 1D nanostructures, in both cases the photocatalytic activity was lower than for the P25-TiO<inf>2</inf> powder. However, the rod-like nanostructures obtained from SG-TiO<inf>2</inf> displayed slightly higher efficiency than the sol-gel prepared powders. The lower photocatalytic activity of the nanostructures with respect to P-25 can be associated with the lower crystallinity of 1D TiO<inf>2</inf> in both materials. © IWA Publishing 2014.
Bibliografía:Adachi, M., Murata, Y., Okada, I., Yoshikawa, S., Formation of titania nanotubes and applications for dye-sensitized solar cells (2003) J. Electrochem. Soc., 150 (8), pp. G488-G493
Asiah, M.N., Mamat, M.H., Khusaimi, Z., Achoi, M.F., Abdullah, S., Rusop, M., Thermal stability and phase transformation of TiO<inf>2</inf> nanowires at various temperatures (2013) Microelectron. Eng, 108, pp. 134-137
Capula, S., (2007) Synthesis, Characterization and Photocatalytic Activity Evaluations of Pt-Ir Nanoparticles Supported onto Titania Nanotubes, , Master in Science Thesis, Instituto Politécnico Nacional, Mexico D.F., Mexico
Cowan, A., Tang, J., Leng, W., Durrant, J., Klug, D., Mechanism of water splitting by TiO<inf>2</inf> (2010) J. Phys. Chem. C, 114 (9), pp. 4208-4214
Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y., Peng, L.M., Preparation and structure analysis of titanium oxide nanotubes (2001) Appl. Phys. Lett., 79 (22), pp. 3702-3704
Henderson, M.A., A surface science perspective on TiO<inf>2</inf> photocatalysis (2011) Surf. Sci. Rep., 66, pp. 185-297
Ibhadon, A.O., Fitzpatrick, P., Heterogeneous photocatalysis: Recent advances and applications (2013) Catalysts, 3, pp. 189-218
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., Formation of titanium oxide nanotube (1998) Langmuir, 14 (12), pp. 3160-3163
Kolen'ko, Y.V., Kovnir, K.A., Gavrilov, A.I., Garshev, A.V., Frantti, J., Lebedev, O.I., Yoshimura, M., Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide (2006) J. Phys. Chem. B, 110 (9), pp. 4030-4038
Lai, C.W., Juan, J.C., Bae Ko, W., Abd Hamid, S.B., An overview: Recent development of titanium oxide nanotubes as photocatalyst for dye degradation (2014) Int. J. Photoenergy, 14. , Publishing Corporation 2014 Article ID 524135
Liu, N., Chen, X., Zhang, J., Schwank, J.W., A review on TiO<inf>2</inf>-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications (2014) Catal. Today, 225, pp. 34-51
Maiyalagan, T., Viswanathan, B., Varadaraju, U., Fabrication and characterization of uniform TiO<inf>2</inf> nanotube arrays by sol-gel templating method (2006) Bull. Mater. Sci., 29 (7), pp. 705-708
Nakahira, A., Kubo, A., Numako, C., TiO<inf>2</inf>-derived titanate nanotubes by hydrothermal process with acid treatments and their microstructural evaluation (2010) Appl. Mater. Interfaces, 2 (9), pp. 2611-2616
Neupane Madhav, P., Song Park, I., Sung Bae, T., Keun Yi, H., Watari, F., Ho Lee, M., Synthesis and morphology of TiO<inf>2</inf> nanotubes by anodic oxidation using surfactant based fluorinated electrolyte (2011) J. Electrochem. Soc., 158 (8), pp. C242-C245
Ollis, D.F., Pelizetti, E., Serpone, N., Destruction of water contaminants (1991) Environ. Sci. Technol., 25, pp. 1522-1529
Preda, S., Teodorescu, V.S., Musuc, A.M., Andronescu, C., Zaharescu, M., Influence of the TiO<inf>2</inf> precursors on the thermal and structural stability of titanate-based nanotubes (2013) J. Mater. Res., 28 (3), pp. 294-303
Ren, Y., Zheng, L., Pourpoint, F., Armstrong, A., Grey, C., Bruce, P., Nanoparticulate TiO<inf>2</inf> (B): Anode for lithium-ion batteries (2012) Angew. Chem. Int. Ed., 51, pp. 2164-2167
Su, R., Bechstein, R., Sø, L., Vang, R.T., Sillassen, M., Palmqvist, A., Besenbacher, F., How the anatase-to-rutile ratio influences the photoreactivity of TiO<inf>2</inf> (2011) J. Phys. Chem., 115 (49), pp. 24287-24292
Thennarasu, S., Rajasekar, K., Balkis Ameen, K., Hydrothermal temperature as a morphological control factor: Preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons (2013) J. Mol. Struct., 1049, pp. 446-457
Wang, D., Zhou, F., Liu, Y., Liu, W., Synthesis and characterization of anatase TiO<inf>2</inf> nanotubes with uniform diameter from titanium powder (2008) Mater. Lett., 62, pp. 1819-1822
Wu, J.J., Yu, C.C., Aligned TiO<inf>2</inf> nanorods and nanowalls (2004) J. Phys. Chem. B, 108 (11), pp. 3377-3379
Yamin, Y., Keller, N., Keller, V., WO<inf>3</inf>-modified TiO<inf>2</inf> nanotubes for photocatalytic elimination of methylethylketone under UVA and solar light irradiation (2012) J. Photochem. Photobiol. A: Chem., 245, pp. 43-57
Yan, J., Zhou, F., TiO<inf>2</inf> nanotubes: Structure optimization for solar cells (2011) J. Mater. Chem., 21, p. 9406
Zhang, R., Tu, B., Zhao, D., Synthesis of highly stable and crystalline mesoporous anatase by using a simple surfactant sulfuric acid carbonization method (2010) Chem. Eur. J., 16, pp. 9977-9981
Zhang, Z.J., Zhang, J.W., Guo, X.Y., Jin, Z.S., Zhang, S.L., Zhou, J.F., TEM study on the formation process of TiO<inf>2</inf> nanotubes (2003) Chin. Chem. Lett., 14 (4), pp. 419-422
ISSN:02731223
DOI:10.2166/wst.2014.312