Synthesis, characterization and photocatalytic activity of 1D TiO<inf>2</inf> nanostructures
Nanowire/nanorod TiO<inf>2</inf> structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO<inf>2</inf> nanopowders. The first precursor was TiO<inf>2</inf> obtained by the sol-gel...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
IWA Publishing
2014
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 10457caa a22013817a 4500 | ||
|---|---|---|---|
| 001 | PAPER-14594 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204509.0 | ||
| 008 | 190411s2014 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84907711181 | |
| 024 | 7 | |2 cas |a pralidoxime mesilate, 154-97-2; rhodamine B, 81-88-9; titanium, 7440-32-6; titanium dioxide, 1317-70-0, 1317-80-2, 13463-67-7, 51745-87-0; Powders; rhodamine B; Rhodamines; Titanium; titanium dioxide | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a WSTED | ||
| 100 | 1 | |a Cabrera, J. | |
| 245 | 1 | 0 | |a Synthesis, characterization and photocatalytic activity of 1D TiO<inf>2</inf> nanostructures |
| 260 | |b IWA Publishing |c 2014 | ||
| 270 | 1 | 0 | |m Rodriguez, J.; Universidad Nacional de IngenieríaPeru |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Adachi, M., Murata, Y., Okada, I., Yoshikawa, S., Formation of titania nanotubes and applications for dye-sensitized solar cells (2003) J. Electrochem. Soc., 150 (8), pp. G488-G493 | ||
| 504 | |a Asiah, M.N., Mamat, M.H., Khusaimi, Z., Achoi, M.F., Abdullah, S., Rusop, M., Thermal stability and phase transformation of TiO<inf>2</inf> nanowires at various temperatures (2013) Microelectron. Eng, 108, pp. 134-137 | ||
| 504 | |a Capula, S., (2007) Synthesis, Characterization and Photocatalytic Activity Evaluations of Pt-Ir Nanoparticles Supported onto Titania Nanotubes, , Master in Science Thesis, Instituto Politécnico Nacional, Mexico D.F., Mexico | ||
| 504 | |a Cowan, A., Tang, J., Leng, W., Durrant, J., Klug, D., Mechanism of water splitting by TiO<inf>2</inf> (2010) J. Phys. Chem. C, 114 (9), pp. 4208-4214 | ||
| 504 | |a Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y., Peng, L.M., Preparation and structure analysis of titanium oxide nanotubes (2001) Appl. Phys. Lett., 79 (22), pp. 3702-3704 | ||
| 504 | |a Henderson, M.A., A surface science perspective on TiO<inf>2</inf> photocatalysis (2011) Surf. Sci. Rep., 66, pp. 185-297 | ||
| 504 | |a Ibhadon, A.O., Fitzpatrick, P., Heterogeneous photocatalysis: Recent advances and applications (2013) Catalysts, 3, pp. 189-218 | ||
| 504 | |a Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., Formation of titanium oxide nanotube (1998) Langmuir, 14 (12), pp. 3160-3163 | ||
| 504 | |a Kolen'ko, Y.V., Kovnir, K.A., Gavrilov, A.I., Garshev, A.V., Frantti, J., Lebedev, O.I., Yoshimura, M., Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide (2006) J. Phys. Chem. B, 110 (9), pp. 4030-4038 | ||
| 504 | |a Lai, C.W., Juan, J.C., Bae Ko, W., Abd Hamid, S.B., An overview: Recent development of titanium oxide nanotubes as photocatalyst for dye degradation (2014) Int. J. Photoenergy, 14. , Publishing Corporation 2014 Article ID 524135 | ||
| 504 | |a Liu, N., Chen, X., Zhang, J., Schwank, J.W., A review on TiO<inf>2</inf>-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications (2014) Catal. Today, 225, pp. 34-51 | ||
| 504 | |a Maiyalagan, T., Viswanathan, B., Varadaraju, U., Fabrication and characterization of uniform TiO<inf>2</inf> nanotube arrays by sol-gel templating method (2006) Bull. Mater. Sci., 29 (7), pp. 705-708 | ||
| 504 | |a Nakahira, A., Kubo, A., Numako, C., TiO<inf>2</inf>-derived titanate nanotubes by hydrothermal process with acid treatments and their microstructural evaluation (2010) Appl. Mater. Interfaces, 2 (9), pp. 2611-2616 | ||
| 504 | |a Neupane Madhav, P., Song Park, I., Sung Bae, T., Keun Yi, H., Watari, F., Ho Lee, M., Synthesis and morphology of TiO<inf>2</inf> nanotubes by anodic oxidation using surfactant based fluorinated electrolyte (2011) J. Electrochem. Soc., 158 (8), pp. C242-C245 | ||
| 504 | |a Ollis, D.F., Pelizetti, E., Serpone, N., Destruction of water contaminants (1991) Environ. Sci. Technol., 25, pp. 1522-1529 | ||
| 504 | |a Preda, S., Teodorescu, V.S., Musuc, A.M., Andronescu, C., Zaharescu, M., Influence of the TiO<inf>2</inf> precursors on the thermal and structural stability of titanate-based nanotubes (2013) J. Mater. Res., 28 (3), pp. 294-303 | ||
| 504 | |a Ren, Y., Zheng, L., Pourpoint, F., Armstrong, A., Grey, C., Bruce, P., Nanoparticulate TiO<inf>2</inf> (B): Anode for lithium-ion batteries (2012) Angew. Chem. Int. Ed., 51, pp. 2164-2167 | ||
| 504 | |a Su, R., Bechstein, R., Sø, L., Vang, R.T., Sillassen, M., Palmqvist, A., Besenbacher, F., How the anatase-to-rutile ratio influences the photoreactivity of TiO<inf>2</inf> (2011) J. Phys. Chem., 115 (49), pp. 24287-24292 | ||
| 504 | |a Thennarasu, S., Rajasekar, K., Balkis Ameen, K., Hydrothermal temperature as a morphological control factor: Preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons (2013) J. Mol. Struct., 1049, pp. 446-457 | ||
| 504 | |a Wang, D., Zhou, F., Liu, Y., Liu, W., Synthesis and characterization of anatase TiO<inf>2</inf> nanotubes with uniform diameter from titanium powder (2008) Mater. Lett., 62, pp. 1819-1822 | ||
| 504 | |a Wu, J.J., Yu, C.C., Aligned TiO<inf>2</inf> nanorods and nanowalls (2004) J. Phys. Chem. B, 108 (11), pp. 3377-3379 | ||
| 504 | |a Yamin, Y., Keller, N., Keller, V., WO<inf>3</inf>-modified TiO<inf>2</inf> nanotubes for photocatalytic elimination of methylethylketone under UVA and solar light irradiation (2012) J. Photochem. Photobiol. A: Chem., 245, pp. 43-57 | ||
| 504 | |a Yan, J., Zhou, F., TiO<inf>2</inf> nanotubes: Structure optimization for solar cells (2011) J. Mater. Chem., 21, p. 9406 | ||
| 504 | |a Zhang, R., Tu, B., Zhao, D., Synthesis of highly stable and crystalline mesoporous anatase by using a simple surfactant sulfuric acid carbonization method (2010) Chem. Eur. J., 16, pp. 9977-9981 | ||
| 504 | |a Zhang, Z.J., Zhang, J.W., Guo, X.Y., Jin, Z.S., Zhang, S.L., Zhou, J.F., TEM study on the formation process of TiO<inf>2</inf> nanotubes (2003) Chin. Chem. Lett., 14 (4), pp. 419-422 | ||
| 520 | 3 | |a Nanowire/nanorod TiO<inf>2</inf> structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO<inf>2</inf> nanopowders. The first precursor was TiO<inf>2</inf> obtained by the sol-gel process (SG-TiO<inf>2</inf>); the second was the well-known commercial TiO<inf>2</inf> P-25 (P25-TiO<inf>2</inf>). Anatase-like 1D TiO<inf>2</inf> nanostructures were obtained in both cases. The one-dimensional (1D) nanostructures synthesized from SG-TiO<inf>2</inf> powders turned into rod-like nanostructures after annealing at 400 °C for 2 h. Conversely, the nanostructures synthesized from P25-TiO<inf>2</inf> preserved the tubular structure after annealing, displaying a higher Brunauer-Emmett-Teller surface area than the first system (279 and 97 m2/g, respectively). Despite the higher surface area shown by the 1D nanostructures, in both cases the photocatalytic activity was lower than for the P25-TiO<inf>2</inf> powder. However, the rod-like nanostructures obtained from SG-TiO<inf>2</inf> displayed slightly higher efficiency than the sol-gel prepared powders. The lower photocatalytic activity of the nanostructures with respect to P-25 can be associated with the lower crystallinity of 1D TiO<inf>2</inf> in both materials. © IWA Publishing 2014. |l eng | |
| 593 | |a Universidad Nacional de Ingeniería, Lima, Peru | ||
| 593 | |a Alcides López Instituto Peruano de Energía Nuclear, IPEN, Lima, Peru | ||
| 593 | |a INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina | ||
| 593 | |a Instituto de Física, UNAM, México D.F., Mexico | ||
| 690 | 1 | 0 | |a 1D TIO<INF>2</INF> NANOSTRUCTURES |
| 690 | 1 | 0 | |a HYDROTHERMAL TREATMENT |
| 690 | 1 | 0 | |a PHOTOCATALYTIC ACTIVITY |
| 690 | 1 | 0 | |a NANOWIRES |
| 690 | 1 | 0 | |a PHOTOCATALYSIS |
| 690 | 1 | 0 | |a POWDERS |
| 690 | 1 | 0 | |a SOL-GEL PROCESS |
| 690 | 1 | 0 | |a 1-D NANOSTRUCTURES |
| 690 | 1 | 0 | |a 1-D TIO |
| 690 | 1 | 0 | |a BRUNAUER-EMMETT-TELLER SURFACE AREAS |
| 690 | 1 | 0 | |a HIGHER EFFICIENCY |
| 690 | 1 | 0 | |a HYDROTHERMAL TREATMENTS |
| 690 | 1 | 0 | |a ONE DIMENSIONAL (1D) NANOSTRUCTURES |
| 690 | 1 | 0 | |a PHOTOCATALYTIC ACTIVITIES |
| 690 | 1 | 0 | |a TUBULAR STRUCTURES |
| 690 | 1 | 0 | |a TITANIUM DIOXIDE |
| 690 | 1 | 0 | |a 1 DIMENSIONAL TITANIUM OXIDE NANOSTRUCTURE |
| 690 | 1 | 0 | |a PRALIDOXIME MESILATE |
| 690 | 1 | 0 | |a RHODAMINE B |
| 690 | 1 | 0 | |a TITANIUM DIOXIDE NANOPARTICLE |
| 690 | 1 | 0 | |a UNCLASSIFIED DRUG |
| 690 | 1 | 0 | |a NANOMATERIAL |
| 690 | 1 | 0 | |a POWDER |
| 690 | 1 | 0 | |a RHODAMINE |
| 690 | 1 | 0 | |a TITANIUM |
| 690 | 1 | 0 | |a TITANIUM DIOXIDE |
| 690 | 1 | 0 | |a CATALYSIS |
| 690 | 1 | 0 | |a CRYSTALLINITY |
| 690 | 1 | 0 | |a HYDROTHERMAL ACTIVITY |
| 690 | 1 | 0 | |a ONE-DIMENSIONAL MODELING |
| 690 | 1 | 0 | |a OXIDE |
| 690 | 1 | 0 | |a ADSORPTION |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a CONTROLLED STUDY |
| 690 | 1 | 0 | |a DEGRADATION |
| 690 | 1 | 0 | |a FIELD EMISSION SCANNING ELECTRON MICROSCOPY |
| 690 | 1 | 0 | |a FOURIER TRANSFORMATION |
| 690 | 1 | 0 | |a ION EXCHANGE |
| 690 | 1 | 0 | |a PHOTOCATALYSIS |
| 690 | 1 | 0 | |a SYNTHESIS |
| 690 | 1 | 0 | |a THERMOSTABILITY |
| 690 | 1 | 0 | |a TRANSMISSION ELECTRON MICROSCOPY |
| 690 | 1 | 0 | |a X RAY DIFFRACTION |
| 690 | 1 | 0 | |a CATALYSIS |
| 690 | 1 | 0 | |a CHEMISTRY |
| 690 | 1 | 0 | |a PARTICLE SIZE |
| 690 | 1 | 0 | |a PHOTOLYSIS |
| 690 | 1 | 0 | |a POWDER |
| 690 | 1 | 0 | |a WATER MANAGEMENT |
| 690 | 1 | 0 | |a CATALYSIS |
| 690 | 1 | 0 | |a NANOSTRUCTURES |
| 690 | 1 | 0 | |a PARTICLE SIZE |
| 690 | 1 | 0 | |a PHOTOLYSIS |
| 690 | 1 | 0 | |a POWDERS |
| 690 | 1 | 0 | |a RHODAMINES |
| 690 | 1 | 0 | |a TITANIUM |
| 690 | 1 | 0 | |a WATER PURIFICATION |
| 700 | 1 | |a Alarcón, H. | |
| 700 | 1 | |a López, A. | |
| 700 | 1 | |a Candal, R. | |
| 700 | 1 | |a Acosta, D. | |
| 700 | 1 | |a Rodriguez, J. | |
| 773 | 0 | |d IWA Publishing, 2014 |g v. 70 |h pp. 972-979 |k n. 6 |p Water Sci. Technol. |x 02731223 |t Water Science and Technology | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907711181&doi=10.2166%2fwst.2014.312&partnerID=40&md5=4c8a2161db118f5ab28389d6fdc07f76 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.2166/wst.2014.312 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_02731223_v70_n6_p972_Cabrera |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02731223_v70_n6_p972_Cabrera |y Registro en la Biblioteca Digital |
| 961 | |a paper_02731223_v70_n6_p972_Cabrera |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 75547 | ||