Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots

Saline, alkaline and mixed saline-alkaline conditions frequently co-occur in soil. In this work, we compared these plant stress sources on the legume Lotus tenuis, regarding their effects on shoot growth and leaf and stem anatomy. In addition, we aimed to gain insight on the plant physiological stat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Paz, R.C
Otros Autores: Reinoso, H., Espasandin, F.D, González Antivilo, F.A, Sansberro, P.A, Rocco, R.A, Ruiz, O.A, Menéndez, A.B
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18064caa a22016577a 4500
001 PAPER-14566
003 AR-BaUEN
005 20230518204507.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84926087367 
024 7 |2 cas  |a proline, 147-85-3, 7005-20-1; sodium chloride, 7647-14-5; Proline; Sodium Chloride 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PBIOF 
100 1 |a Paz, R.C. 
245 1 0 |a Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots 
260 |b Blackwell Publishing Ltd  |c 2014 
270 1 0 |m Menéndez, A.B.; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Piso 4 Pab II Ciudad Universitaria, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Alam, S.M., Mehdi Naqvi, S.S., Ansari, R., Impact of soil pH on nutrient uptake by crop plants (1999) Handbook of plant and crop stress, pp. 51-60. , Pessarakli M. (Ed.), CRC Press, Boca Raton, FL, USA 
504 |a Boughalleb, F., Denden, M., Tiba, B.B., Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea (2009) Acta Physiologiae Plantarum, 31, pp. 947-960 
504 |a Boyer, J.S., Wong, S.C., Farquhar, C.D., CO, and water vapor exchange across the leaf cuticle (epidermis) at various water potentials (1997) Plant Physiology, 114, pp. 185-191 
504 |a Cachorro, P., Ortiz, A., Barcelo, A.R., Cerda, A., Lignin deposition in vascular tissues of Phaseolus vulgaris roots in response to salt stress (1993) Phyton - Annales Rei Botanicae, 33, pp. 33-40 
504 |a Cartmill, A., Alarcón, A., Valdez-Aguilar, L.A., Arbuscular mycorrhizal fungi enhance tolerance of Rosa multiflora cv. Burr to bicarbonate in irrigation water (2007) Journal of Plant Nutrition, 30, pp. 1517-1540 
504 |a Cartmill, A.D., Valdez-Aguilar, L.A., Bryan, D.L., Alarcón, A., Arbuscular mycorrhizal fungi enhance tolerance of Vinca to high alkalinity in irrigation water (2008) Scientia Horticulturae, 115, pp. 275-284 
504 |a Costa, J.L., García, F.O., Respuesta de un pastizal natural a la fertilización con fósforo y nitrógeno en un natracuol (1998) Revista de Investigaciones Agropecuarias, 28, pp. 31-39 
504 |a Cuin, A.T., Shabala, S., Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots (2005) Plant and Cell Physiology, 46, pp. 1924-1933 
504 |a Cuin, A.T., Shabala, S., Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots (2007) Plant, Cell and Environment, 30, pp. 875-885 
504 |a D'Ambrogio de Argüeso, A., (1986) Manual de Técnicas en Histología Veg Hemisferio Sur, pp. 50-67. , Hemisferica Sur, Buenos Aires, Argentina 
504 |a De Vos, A.C., Broekman, R., Groot, M.P., Rozema, J., Ecophysiological response of Crambe maritima to airborne and soil-borne salinity (2010) Annals of Botany, 105, pp. 925-937 
504 |a Delauney, A.J., Verma, D.P.S., Proline biosynthesis and osmoregulation in plants (1993) The Plant Journal, 4, pp. 215-223 
504 |a Dolatabadian, A., Modarressanavy, S.A.M., Ghanati, F., Effect of salinity on growth, xylem structure and anatomical characteristics of soybean (2011) Notulae Scientia Biologicae, 3, pp. 41-45 
504 |a Gharsalli, M., Zribi, K., Hajji, M., Physiological responses of pea to iron deficiency induced by bicarbonate (2001) Plant nutrition - food security and sustainability of agro-ecosystems, pp. 606-607. , Horst W., Schenk M.K., Bürkert A., Claassen N., Flessa H., Frommer W.B., Goldbach H.E., Olfs H.-W., Römheld V., Sattelmacher B., Schmidhalter U., Schubert S., von Wirén N., Wittenmayer L. (Eds), Springer, Berlin, Germany 
504 |a Guo, X.P., Tackmore, M., Obai, K., Salahou, M.K., The combined effects of salinity and water stress on the growth and yield quality of tomato (2013) Applied Mechanics and Materials, 295, pp. 2265-2273 
504 |a Habba, I.E., Abd El Aziz, N.G., Metwally, S.A., Mazhar, A.A.M., Response of growth and chemical constituents in Khaya sengalensis to salinity and gypsum under calcareous soil conditions (2013) World Applied Sciences Journal, 22, pp. 447-452 
504 |a Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., Plant cellular and molecular responses to high salinity (2000) Annual Review of Plant Physiology, 51, pp. 463-499 
504 |a Hong, Z.L., Lakkineni, K., Zhang, Z.M., Verma, D.P.S., Removal of feedback inhibition of Δ1-pyrroline-5-carboxylated synthetase results in increased proline accumulation and protection of plants from osmotic stress (2000) Plant Physiology, 122, pp. 1129-1136 
504 |a Johansen, D.A., (1940) Plant microtechnique, pp. 1-523. , McGraw-Hill, New York, USA 
504 |a Kadohama, N., Goh, T., Ohnishi, M., Fukaki, H., Mimura, T., Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease (2013) PLoS ONE, 8, p. e57259 
504 |a Kiliç, S., Cavuşoğlu, K., Kabar, K., Effects of 24-epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley (2007) Journal of Science, 2, pp. 41-52 
504 |a Kukavica, B., Morina, F., Janjiæ, N., Boroja, N., Jovanoviæ, L., Veljoviæ-Jovanoviæ, D., Effects of mixed saline and alkaline stress on the morphology and anatomy of Pisum sativum: the role of peroxidase and ascorbate oxidase in growth regulation (2013) Archives of Biological Sciences, 65, pp. 265-278 
504 |a Kulkarni, M., Borse, T., Chaphalkar, S., Mining anatomical traits: a novel modeling approach for increased water use efficiency under drought conditions in plants (2008) Czech Journal of Genetics and Plant Breeding, 44, pp. 11-21 
504 |a Läuchli, A., Lüttge, U., (2002) Salinity: Environment - Plants - Molecules, p. 552. , Springer, Berlin, Germany, pp 
504 |a Leon, J.M., Bukovac, M.J., Cuticle development and surface morphology of olive leaves with reference to penetration of foliar-applied chemicals (1978) Journal of the American Society of Horticultural Science, 103, pp. 465-472 
504 |a Li, P.H., Zhang, H., Wang, B.S., Ionic homeostasis of plants under salt stress (2003) Acta Botanica Boreal-Occident Sinica, 23, pp. 1810-1817 
504 |a Li, R., Shi, F., Fukuda, K., Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae) (2010) South African Journal of Botany, 76, pp. 380-387 
504 |a Lovy-Wheeler, A., Kunkel, J.G., Allwood, E.G., Hussey, P.J., Hepler, P.K., Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily (2006) The Plant Cell, 18, pp. 2182-2193 
504 |a Magné, C., Larher, F., High sugar content of extracts interferes with colorimetric determination of amino acids and free proline (1992) Analytical Biochemistry, 200, pp. 115-118 
504 |a Mandre, M., Klõšeiko, J., Lukjanova, A., Tullus, A., Hybrid aspen responses to alkalization of soil: growth, leaf structure, photosynthetic rate and carbohydrates (2012) Trees, 26, pp. 1847-1858 
504 |a Marcum, K.B., Saline tolerance physiology in grasses (2006) Ecophysiology of high salinity tolerant plants, pp. 157-172. , Khan M. A., Weber D. J. (Eds), Springer, Berlin, Germany 
504 |a Mittler, R., Oxidative stress, antioxidants and stress tolerance (2002) Trends in Plant Science, 7, pp. 405-410 
504 |a Munns, R., Na+, K+ and C1- xylem sap flowing to shoots of NaCl-treated barley (1985) Journal of Experimental Botany, 36, pp. 1032-1042 
504 |a Munns, R., Comparative physiology of salt and water stress (2002) Plant, Cell & Environment, 25, pp. 239-250 
504 |a Nawaz, T., Hameed, M., Ashraf, M., Batool, S., Naz, N., Modifications in root and stem anatomy for water conservation in some diverse blue panic (Panicum antidotale Retz.) ecotypes under drought stress (2013) Arid Land Research and Management, 27, pp. 286-297 
504 |a Norris, R.R., Bukovac, M.J., Structure of the pear leaf cuticle with special reference to cuticular penetration (1968) American Journal of Botany, 55, pp. 975-983 
504 |a Orsini, F., Accorsi, M., Gianquinto, G., Dinelli, G., Antognoni, F., Ruiz Carrasco, K.B., Martínez, E.A., Biondi, S., Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism (2011) Functional Plant Biology, 38, pp. 818-831 
504 |a Paz, R.C., Rocco, R.A., Reinoso, H., Menéndez, A.B., Pieckenstain, F.L., Ruiz, A.O., Comparative study of alkaline, saline, and mixed saline-alkaline stresses with regard to their effects on growth, nutrient accumulation, and root morphology of Lotus tenuis (2012) Journal of Plant Growth Regulation, 31, pp. 448-459 
504 |a Qadir, M., Shams, M., Some agronomic and physiological aspects of salt tolerance in cotton (Gossypium hirsutum L.) (1997) Journal of Agronomy and Crop Science, 179, pp. 101-106 
504 |a Salisbury, E.J., On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora (1927) Philosophical Transactions of the Royal Society of London B, 216, pp. 1-65 
504 |a dos Santos, J.B., dos Santos, D.B., de Azevedo, C.A.V., Rebequi, A.M., Cavalcante, L.F., Cavalcante, I.H.L., Comportamento morfofisiológico da mamoneira BRS energia submetida à irrigação com água salina [Morphophysiological behavior of castor bean brs energia submitted to irrigation with saline water] (2013) Revista Brasileira de Engenharia Agrícola e Ambiental, 17, pp. 145-152 
504 |a Scott, F.M., Lipid deposition in the intercellular space (1964) Nature, 203, pp. 164-165 
504 |a Scott, F.M., Cell wall surface of the higher plants (1966) Nature, 210, pp. 1015-1017 
504 |a Shabala, L., Mackay, A., Tian, Y., Jacobsen, S., Zhou, D., Shabala, S., Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium chinoa) (2012) Physiologia Plantarum, 146, pp. 26-38 
504 |a Shah, K., Dubey, R.S., Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant (1998) Biologia Plantarum, 40, pp. 121-130 
504 |a Shi, D., Sheng, Y., Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors (2005) Environmental and Experimental Botany, 54, pp. 8-21 
504 |a Shi, D.C., Wang, D., Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag (2005) Plant and Soil, 271, pp. 15-26 
504 |a Shi, D., Zhao, K., Effects of sodium chloride and carbonate on growth of Puccinellia tenuiflora and on present state of mineral elements in nutrient solution (1997) Acta Pratacult Sinica, 6, pp. 51-61 
504 |a Smirnoff, N., Cumbes, Q.J., Hydroxyl radical scavenging activity of compatible solutes (1989) Phytochemistry, 28, pp. 1057-1060 
504 |a Soltekin, O., Tüzel, Y., Öztekin, G.B., Tüzel, I.H., Response of pepino (Solanum muricatum Aiton) to salinity (2012) Acta Horticulturae, 960, pp. 425-431 
504 |a Tester, M., Davenport, R., Na+ tolerance and Na+ transport in plants (2003) Annals of Botany, 91, pp. 503-527 
504 |a Troll, W., Lindsley, J., The photometric methods for determination of proline (1955) Journal of Biological Chemistry, 215, pp. 655-660 
504 |a Valdez-Aguilar, L.A., Effect of alkalinity in irrigation water on selected greenhouse crops (2004), Ph.D. thesis in Horticulture, Texas A&M University, Texas, USA; Valdez-Aguilar, L.A., Reed, D.W., Influence of potassium substitution by rubidium and sodium on growth, ion accumulation, and ion partitioning in bean under high alkalinity (2008) Journal of Plant Nutrition, 31, pp. 867-883 
504 |a Wang, Y., Guo, J.X., Meng, Q.L., Cui, X.Y., Physiological responses of Krishum (Iris lactea Pall. var. chinensis Koidz) to neutral and alkaline salts (2008) Journal of Agronomy and Crop Science, 194, pp. 429-437 
504 |a Wilkinson, S., Davies, W.J., Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell which involves the suppression of saturable ABA uptake by the epidermal symplast (1997) Plant Physiology, 113, pp. 559-573 
504 |a Yang, C., Chong, J., Changyou, L., Kim, C., Shi, D., Wang, D., Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions (2007) Plant and Soil, 294, pp. 263-276 
504 |a Yang, C., Shi, D., Wang, D., Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.) (2008) Plant Growth Regulation, 56, pp. 179-190 
504 |a Zhang, P., Fu, J., Hu, L., Effects of alkali stress on growth, free amino acid and carbohydrate metabolism in Kentucky bluegrass (Poa pratensis) (2012) Ecotoxicology, 21, pp. 1911-1918 
520 3 |a Saline, alkaline and mixed saline-alkaline conditions frequently co-occur in soil. In this work, we compared these plant stress sources on the legume Lotus tenuis, regarding their effects on shoot growth and leaf and stem anatomy. In addition, we aimed to gain insight on the plant physiological status of stressed plants. We performed pot experiments with four treatments: control without salt (pH = 5.8; EC = 1.2 dS·m-1) and three stress conditions, saline (100 mm NaCl, pH = 5.8; EC = 11.0 dS·m-1), alkaline (10 mm NaHCO<inf>3</inf>, pH = 8.0, EC = 1.9 dS·m-1) and mixed salt-alkaline (10 mm NaHCO<inf>3</inf> + 100 mm NaCl, pH = 8.0, EC = 11.0 dS·m-1). Neutral and alkaline salts produced a similar level of growth inhibition on L. tenuis shoots, whereas their mixture exacerbated their detrimental effects. Our results showed that none of the analysed morpho-anatomical parameters categorically differentiated one stress from the other. However, NaCl- and NaHCO<inf>3</inf>-derived stress could be discriminated to different extents and/or directions of changes in some of the anatomical traits. For example, alkalinity led to increased stomatal opening, unlike NaCl-treated plants, where a reduction in stomatal aperture was observed. Similarly, plants from the mixed saline-alkaline treatment characteristically lacked palisade mesophyll in their leaves. The stem cross-section and vessel areas, as well as the number of vascular bundles in the sectioned stem were reduced in all treatments. A rise in the number of vessel elements in the xylem was recorded in NaCl-treated plants, but not in those treated exclusively with NaHCO<inf>3.</inf>. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.  |l eng 
593 |a Unidad de Biotecnología 1, IIB-IINTECH/UNSAM-CONICET, Chascomús, Buenos Aires, Argentina 
593 |a Facultad de Ciencias Agrarias (FCA), Instituto de Biotecnología Agrícola de Mendoza (IBAM), Mendoza, Argentina 
593 |a Laboratorio de Morfología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina 
593 |a Facultad de Ciencias Agrarias (UNNE), Instituto de Botánica del Nordeste (IBONE-CONICET), Corrientes, Argentina 
593 |a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ALKALINITY 
690 1 0 |a OSMOTIC POTENTIAL 
690 1 0 |a PROLINE 
690 1 0 |a SALINITY 
690 1 0 |a SHOOT ANATOMY 
690 1 0 |a TRANSPIRATION 
690 1 0 |a ALKALINITY 
690 1 0 |a ANATOMY 
690 1 0 |a INHIBITION 
690 1 0 |a LEAF AREA 
690 1 0 |a LEGUME 
690 1 0 |a MORPHOLOGY 
690 1 0 |a OSMOREGULATION 
690 1 0 |a PHYSIOLOGICAL RESPONSE 
690 1 0 |a SALINITY TOLERANCE 
690 1 0 |a SHOOT GROWTH 
690 1 0 |a STOMATAL CONDUCTANCE 
690 1 0 |a XYLEM 
690 1 0 |a LOTUS TENUIS 
690 1 0 |a PROLINE 
690 1 0 |a SODIUM CHLORIDE 
690 1 0 |a ANATOMY AND HISTOLOGY 
690 1 0 |a CHEMISTRY 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a EVAPOTRANSPIRATION 
690 1 0 |a LOTUS 
690 1 0 |a METABOLISM 
690 1 0 |a OSMOTIC PRESSURE 
690 1 0 |a PHYSIOLOGICAL STRESS 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a PLANT EPIDERMIS 
690 1 0 |a PLANT LEAF 
690 1 0 |a PLANT STEM 
690 1 0 |a SALINITY 
690 1 0 |a LOTUS 
690 1 0 |a OSMOTIC PRESSURE 
690 1 0 |a PLANT EPIDERMIS 
690 1 0 |a PLANT LEAVES 
690 1 0 |a PLANT STEMS 
690 1 0 |a PLANT TRANSPIRATION 
690 1 0 |a PROLINE 
690 1 0 |a SALINITY 
690 1 0 |a SODIUM CHLORIDE 
690 1 0 |a STRESS, PHYSIOLOGICAL 
700 1 |a Reinoso, H. 
700 1 |a Espasandin, F.D. 
700 1 |a González Antivilo, F.A. 
700 1 |a Sansberro, P.A. 
700 1 |a Rocco, R.A. 
700 1 |a Ruiz, O.A. 
700 1 |a Menéndez, A.B. 
773 0 |d Blackwell Publishing Ltd, 2014  |g v. 16  |h pp. 1042-1049  |k n. 6  |p Plant Biol.  |x 14358603  |t Plant Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926087367&doi=10.1111%2fplb.12156&partnerID=40&md5=efa737117308226a92591a16159cd13c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/plb.12156  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14358603_v16_n6_p1042_Paz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14358603_v16_n6_p1042_Paz  |y Registro en la Biblioteca Digital 
961 |a paper_14358603_v16_n6_p1042_Paz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75519