b-Coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs

A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonomo, F.
Otros Autores: Schaudt, O., Stein, M., Valencia-Pabon, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2014
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06670caa a22007817a 4500
001 PAPER-14564
003 AR-BaUEN
005 20240816133020.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84905833472 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bonomo, F. 
245 1 0 |a b-Coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs 
260 |b Springer Verlag  |c 2014 
270 1 0 |m Bonomo, F.; Dep. de Computación, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; email: fbonomo@dc.uba.ar 
504 |a Berge, C., Two theorems in graph theory (1957) Proc. Natl. Acad. Sci. U.S.A., 43, pp. 842-844 
504 |a Bodlaender, H.L., Achromatic number is NP-complete for cographs and interval graphs (1989) Inf. Process. Lett., 31, pp. 135-138 
504 |a Bonomo, F., Durán, G., Maffray, F., Marenco, J., Valencia-Pabon, M., On the b-coloring of cographs and P4-sparse graphs (2009) Graphs Comb., 25 (2), pp. 153-167 
504 |a Dantzig, G.B., Discrete-variable extremum problems (1957) Oper. Res., 5, pp. 266-277 
504 |a Edmonds, J., Paths, trees and flowers (1965) Can. J. Math., 17, pp. 449-467 
504 |a Faik, T., (2005) La B-continuité des B-colorations: Complexité, Propriétés Structurelles et Algorithmes, , Ph.D. thesis, L.R.I., Université Paris-Sud, Orsay, France 
504 |a Harary, F., Hedetniemi, S., The achromatic number of a graph (1970) J. Comb. Theor., 8, pp. 154-161 
504 |a Havet, F., Linhares-Sales, C., Sampaio, L., b-coloring of tight graphs (2012) Discrete Appl. Math., 160 (18), pp. 2709-2715 
504 |a Hoàng, C.T., Kouider, M., On the b-dominating coloring of graphs (2005) Discrete Appl. Math., 152, pp. 176-186 
504 |a Hoàng, C.T., Linhares Sales, C., Maffray, F., On minimally b-imperfect graphs (2009) Discrete Appl. Math., 157 (17), pp. 3519-3530 
504 |a Irving, R.W., Manlove, D.F., The b-chromatic number of a graph (1999) Discrete Appl. Math., 91, pp. 127-141 
504 |a Kára, J., Kratochvíl, J., Voigt, M., (2004) b-continuity, , Technical report M 14/04, Technical University Ilmenau, Faculty of Mathematics and Natural Sciences 
504 |a Kratochvíl, J., Tuza, Z., Voigt, M., On the b-Chromatic number of graphs (2002) LNCS, 2573, pp. 310-320. , Kučera, L. (ed.) WG 2002. Springer, Heidelberg 
504 |a Tinhofer, G., Strong tree-cographs are Birkoff graphs (1989) Discrete Appl. Math., 22 (3), pp. 275-288 
504 |a Yannakakis, M., Gavril, F., Edge dominating sets in graphs (1980) SIAM J. Appl. Math., 38 (3), pp. 364-372A4 - Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE 
506 |2 openaire  |e Política editorial 
520 3 |a A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = χ (G),..., χb(G) and b-monotonic if χb (H1) ≥ χb (H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: 1. We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. 2. We prove that it is NP-complete to decide whether the b-chromatic number of a co-bipartite graph is at most a given threshold. 3. We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. 4. Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic. © 2014 Springer International Publishing.  |l eng 
593 |a Dep. de Computación, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Institut de Mathématiques de Jussieu, CNRS UMR7586, Université Pierre et Marie Curie (Paris 6), Paris, France 
593 |a Centro de Mod. Mat., Universidad de Chile, Santiago, Chile 
593 |a Université Paris 13, Sorbonne Paris Cité, CNRS UMR7030, Villetaneuse, France 
650 1 7 |2 spines  |a COLOR 
650 1 7 |2 spines  |a COLOR 
690 1 0 |a COLORING 
690 1 0 |a COMBINATORIAL OPTIMIZATION 
690 1 0 |a DYNAMIC PROGRAMMING 
690 1 0 |a FORESTRY 
690 1 0 |a POLYNOMIAL APPROXIMATION 
690 1 0 |a AUGMENTING PATH 
690 1 0 |a B-CHROMATIC NUMBER 
690 1 0 |a BIPARTITE GRAPHS 
690 1 0 |a INDUCED SUBGRAPHS 
690 1 0 |a POLYNOMIAL-TIME DYNAMIC PROGRAMMING 
690 1 0 |a PROPER COLORING 
690 1 0 |a STABILITY NUMBER 
690 1 0 |a TRIANGLE-FREE GRAPHS 
690 1 0 |a TREES (MATHEMATICS) 
690 1 0 |a COLORING 
690 1 0 |a FORESTRY 
690 1 0 |a MATHEMATICS 
690 1 0 |a TREES 
700 1 |a Schaudt, O. 
700 1 |a Stein, M. 
700 1 |a Valencia-Pabon, M. 
773 0 |d Springer Verlag, 2014  |g v. 8596 LNCS  |h pp. 100-111  |p Lect. Notes Comput. Sci.  |n Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  |x 03029743  |w (AR-BaUEN)CENRE-983  |z 9783319091730  |t 3rd International Symposium on Combinatorial Optimization, ISCO 2014 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905833472&doi=10.1007%2f978-3-319-09174-7_9&partnerID=40&md5=54992f762164d79acba8f8409891c11d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-3-319-09174-7_9  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03029743_v8596LNCS_n_p100_Bonomo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v8596LNCS_n_p100_Bonomo  |y Registro en la Biblioteca Digital 
961 |a paper_03029743_v8596LNCS_n_p100_Bonomo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75517