On the incomplete oblique projections method for solving box constrained least squares problems
The aim of this paper is to extend the applicability of the incomplete oblique projections method (IOP) previously introduced by the authors for solving inconsistent linear systems to the box constrained case. The new algorithm employs incomplete projections onto the set of solutions of the augmente...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Kluwer Academic Publishers
2014
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 07095caa a22006497a 4500 | ||
|---|---|---|---|
| 001 | PAPER-14541 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204505.0 | ||
| 008 | 190411s2014 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84899625566 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Scolnik, H. | |
| 245 | 1 | 3 | |a On the incomplete oblique projections method for solving box constrained least squares problems |
| 260 | |b Kluwer Academic Publishers |c 2014 | ||
| 270 | 1 | 0 | |m Echebest, N.; Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CP 152, 50 y 115, La Plata, 1900, Argentina; email: opti@mate.unlp.edu.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Bauschke, H.H., The approximation of fixed points of compositions of nonexpansve mappings in Hilbert space (1996) J. Math. Anal. Appl., 202, pp. 150-159 | ||
| 504 | |a Browne, J.A., Herman, G.T., Odhner, D., (1993) SNARK93: A Programming System for Image Reconstruction from Projections, , Department of Radiology, University of Pennsylvania, Medical Image Processing Group. Technical Report MIPG198 | ||
| 504 | |a Byrne, C., Iterative oblique projection onto convex sets and the split feasibility problem (2002) Inverse Probl., 18, pp. 441-453 | ||
| 504 | |a Byrne, C., Censor, Y., Proximity function minimization using multiple Bregman projections with applications to split feasibility and Kullback-Leibler distance minimization (2001) Ann. Oper. Res., 105, pp. 77-98 | ||
| 504 | |a Censor, Y., Zenios, S., (1997) Parallel Optimization: Theory and Applications, , New York: Oxford University Press | ||
| 504 | |a Censor, Y., Gordon, D., Gordon, R., Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems (2001) Parallel Comput., 27, pp. 777-808 | ||
| 504 | |a Censor, Y., Elfving, T., Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem (2002) SIAM J. Matrix Anal. Appl., 24, pp. 40-58 | ||
| 504 | |a Censor, Y., Computational acceleration of projections algorithms for linear best approximation problem (2006) Linear Algebra Appl., 416, pp. 111-123 | ||
| 504 | |a Combettes, P.L., (1995) Construction d'un point fixe commun a famille de contractions fermes, , C. R. Acad. Sci. Paris, Ser. I Math. 320 | ||
| 504 | |a Csiszár, I., Tusnády, G., Information geometry and alternating minimization procedures (1984) Stat. Decis. Suppl., 1, pp. 205-237 | ||
| 504 | |a Dolan, E.D., Moré, J.J., Benchmarking optimization software with performance profiles (2002) Math. Program., 91, pp. 201-213 | ||
| 504 | |a García Palomares, U.M., Parallel projected aggregation methods for solving the convex feasibility problem (1993) SIAM J. Optim., 3, pp. 882-900 | ||
| 504 | |a Jiang, M., Wang, G., Convergence studies on iterative algorithms for image reconstruction (2003) IEEE Trans. Med. Imaging, 22, pp. 569-579 | ||
| 504 | |a Landweber, L., An iteration formula for Fredholm integral equations of the first kind (1951) Am. J. Math., 73, pp. 615-624 | ||
| 504 | |a Ortega, J.M., Rheinboldt, W.C., (1970) Iterative Solution of Nonlinear Equations in Several Variables, , New York and London: Academic Press | ||
| 504 | |a Popa, C., Zdunek, R., Kaczmarz extended algorithm for tomographic image reconstruction from limited-data (2004) Math. Comput. Simul., 65, pp. 579-598 | ||
| 504 | |a Portugal, L.I., Judice, J., Vincente, L.N., A comparison of block pivoting and interior-point algorithms for linear least squares problem with nonnegative variables (1994) Math. Comput., 63, pp. 625-643 | ||
| 504 | |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Vacchino, M.C., A class of optimized row projection methods for solving large non-symmetric linear systems (2002) Appl. Numer. Math., 41, pp. 499-513 | ||
| 504 | |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Vacchino, M.C., Incomplete oblique projections for solving large inconsistent linear systems (2008) Math. Program. B., 111, pp. 273-300 | ||
| 504 | |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Regularized incomplete oblique projections method for solving least-squares problems in image reconstruction (2008) Int. Trans. Oper. Res., 15, pp. 417-438 | ||
| 504 | |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Extensions of incomplete oblique projections for rank-deficient problems (2009) J. Ind. Manag. Optim. (JIMO), 5, pp. 175-191 | ||
| 504 | |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Implicit regularization of the incomplete oblique projections methods (2009) Int. Trans. Oper. Res., 16, pp. 525-546 | ||
| 504 | |a Stark, P.B., Parker, R.L., Bounded variable least squares: an algorithm and applications (1995) J. Comput. Stat., 10, pp. 129-141 | ||
| 504 | |a Xiao, Y., Michalski, D., Censor, Y., Galvin, J.M., Inherent smoothness of intensity patterns for intensity radiation therapy generated by simultaneous projection algorithms (2004) Phys. Med. Biol., 49, pp. 3227-3245 | ||
| 520 | 3 | |a The aim of this paper is to extend the applicability of the incomplete oblique projections method (IOP) previously introduced by the authors for solving inconsistent linear systems to the box constrained case. The new algorithm employs incomplete projections onto the set of solutions of the augmented system Ax - r = b, together with the box constraints, based on a scheme similar to the one of IOP, adding the conditions for accepting an approximate solution in the box. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known methods. © 2013 Springer Science+Business Media New York. |l eng | |
| 593 | |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CP 152, 50 y 115, La Plata, 1900, Argentina | ||
| 593 | |a Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina | ||
| 690 | 1 | 0 | |a BOX CONSTRAINED |
| 690 | 1 | 0 | |a INCOMPLETE PROJECTIONS |
| 690 | 1 | 0 | |a INCONSISTENT SYSTEMS |
| 700 | 1 | |a Echebest, N. | |
| 700 | 1 | |a Guardarucci, M.T. | |
| 773 | 0 | |d Kluwer Academic Publishers, 2014 |g v. 66 |h pp. 17-32 |k n. 1 |p Numer. Algorithms |x 10171398 |t Numerical Algorithms | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899625566&doi=10.1007%2fs11075-013-9721-z&partnerID=40&md5=412cc947466cdc512574815b753c465e |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s11075-013-9721-z |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_10171398_v66_n1_p17_Scolnik |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10171398_v66_n1_p17_Scolnik |y Registro en la Biblioteca Digital |
| 961 | |a paper_10171398_v66_n1_p17_Scolnik |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 75494 | ||