On the incomplete oblique projections method for solving box constrained least squares problems

The aim of this paper is to extend the applicability of the incomplete oblique projections method (IOP) previously introduced by the authors for solving inconsistent linear systems to the box constrained case. The new algorithm employs incomplete projections onto the set of solutions of the augmente...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Scolnik, H.
Otros Autores: Echebest, N., Guardarucci, M.T
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Kluwer Academic Publishers 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07095caa a22006497a 4500
001 PAPER-14541
003 AR-BaUEN
005 20230518204505.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84899625566 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Scolnik, H. 
245 1 3 |a On the incomplete oblique projections method for solving box constrained least squares problems 
260 |b Kluwer Academic Publishers  |c 2014 
270 1 0 |m Echebest, N.; Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CP 152, 50 y 115, La Plata, 1900, Argentina; email: opti@mate.unlp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Bauschke, H.H., The approximation of fixed points of compositions of nonexpansve mappings in Hilbert space (1996) J. Math. Anal. Appl., 202, pp. 150-159 
504 |a Browne, J.A., Herman, G.T., Odhner, D., (1993) SNARK93: A Programming System for Image Reconstruction from Projections, , Department of Radiology, University of Pennsylvania, Medical Image Processing Group. Technical Report MIPG198 
504 |a Byrne, C., Iterative oblique projection onto convex sets and the split feasibility problem (2002) Inverse Probl., 18, pp. 441-453 
504 |a Byrne, C., Censor, Y., Proximity function minimization using multiple Bregman projections with applications to split feasibility and Kullback-Leibler distance minimization (2001) Ann. Oper. Res., 105, pp. 77-98 
504 |a Censor, Y., Zenios, S., (1997) Parallel Optimization: Theory and Applications, , New York: Oxford University Press 
504 |a Censor, Y., Gordon, D., Gordon, R., Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems (2001) Parallel Comput., 27, pp. 777-808 
504 |a Censor, Y., Elfving, T., Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem (2002) SIAM J. Matrix Anal. Appl., 24, pp. 40-58 
504 |a Censor, Y., Computational acceleration of projections algorithms for linear best approximation problem (2006) Linear Algebra Appl., 416, pp. 111-123 
504 |a Combettes, P.L., (1995) Construction d'un point fixe commun a famille de contractions fermes, , C. R. Acad. Sci. Paris, Ser. I Math. 320 
504 |a Csiszár, I., Tusnády, G., Information geometry and alternating minimization procedures (1984) Stat. Decis. Suppl., 1, pp. 205-237 
504 |a Dolan, E.D., Moré, J.J., Benchmarking optimization software with performance profiles (2002) Math. Program., 91, pp. 201-213 
504 |a García Palomares, U.M., Parallel projected aggregation methods for solving the convex feasibility problem (1993) SIAM J. Optim., 3, pp. 882-900 
504 |a Jiang, M., Wang, G., Convergence studies on iterative algorithms for image reconstruction (2003) IEEE Trans. Med. Imaging, 22, pp. 569-579 
504 |a Landweber, L., An iteration formula for Fredholm integral equations of the first kind (1951) Am. J. Math., 73, pp. 615-624 
504 |a Ortega, J.M., Rheinboldt, W.C., (1970) Iterative Solution of Nonlinear Equations in Several Variables, , New York and London: Academic Press 
504 |a Popa, C., Zdunek, R., Kaczmarz extended algorithm for tomographic image reconstruction from limited-data (2004) Math. Comput. Simul., 65, pp. 579-598 
504 |a Portugal, L.I., Judice, J., Vincente, L.N., A comparison of block pivoting and interior-point algorithms for linear least squares problem with nonnegative variables (1994) Math. Comput., 63, pp. 625-643 
504 |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Vacchino, M.C., A class of optimized row projection methods for solving large non-symmetric linear systems (2002) Appl. Numer. Math., 41, pp. 499-513 
504 |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Vacchino, M.C., Incomplete oblique projections for solving large inconsistent linear systems (2008) Math. Program. B., 111, pp. 273-300 
504 |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Regularized incomplete oblique projections method for solving least-squares problems in image reconstruction (2008) Int. Trans. Oper. Res., 15, pp. 417-438 
504 |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Extensions of incomplete oblique projections for rank-deficient problems (2009) J. Ind. Manag. Optim. (JIMO), 5, pp. 175-191 
504 |a Scolnik, H.D., Echebest, N., Guardarucci, M.T., Implicit regularization of the incomplete oblique projections methods (2009) Int. Trans. Oper. Res., 16, pp. 525-546 
504 |a Stark, P.B., Parker, R.L., Bounded variable least squares: an algorithm and applications (1995) J. Comput. Stat., 10, pp. 129-141 
504 |a Xiao, Y., Michalski, D., Censor, Y., Galvin, J.M., Inherent smoothness of intensity patterns for intensity radiation therapy generated by simultaneous projection algorithms (2004) Phys. Med. Biol., 49, pp. 3227-3245 
520 3 |a The aim of this paper is to extend the applicability of the incomplete oblique projections method (IOP) previously introduced by the authors for solving inconsistent linear systems to the box constrained case. The new algorithm employs incomplete projections onto the set of solutions of the augmented system Ax - r = b, together with the box constraints, based on a scheme similar to the one of IOP, adding the conditions for accepting an approximate solution in the box. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known methods. © 2013 Springer Science+Business Media New York.  |l eng 
593 |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CP 152, 50 y 115, La Plata, 1900, Argentina 
593 |a Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina 
690 1 0 |a BOX CONSTRAINED 
690 1 0 |a INCOMPLETE PROJECTIONS 
690 1 0 |a INCONSISTENT SYSTEMS 
700 1 |a Echebest, N. 
700 1 |a Guardarucci, M.T. 
773 0 |d Kluwer Academic Publishers, 2014  |g v. 66  |h pp. 17-32  |k n. 1  |p Numer. Algorithms  |x 10171398  |t Numerical Algorithms 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899625566&doi=10.1007%2fs11075-013-9721-z&partnerID=40&md5=412cc947466cdc512574815b753c465e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11075-013-9721-z  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10171398_v66_n1_p17_Scolnik  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10171398_v66_n1_p17_Scolnik  |y Registro en la Biblioteca Digital 
961 |a paper_10171398_v66_n1_p17_Scolnik  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75494