β3-Chimaerin, a novel member of the chimaerin Rac-GAP family

Chimaerins are a family of diacylglycerol- and phorbol ester-regulated GTPase activating proteins (GAPs) for the small G-protein Rac. Extensive evidence indicates that these proteins play important roles in development, axon guidance, metabolism, cell motility, and T cell activation. Four isoforms h...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zubeldia-Brenner, L.
Otros Autores: Gutierrez-Uzquiza, A., Barrio-Real, L., Wang, H., Kazanietz, M.G, Leskow, F.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Kluwer Academic Publishers 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17272caa a22019097a 4500
001 PAPER-14532
003 AR-BaUEN
005 20230518204504.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84897492540 
024 7 |2 Molecular Sequence Numbers  |a GENBANK: ADK47390, NP_004058; 
024 7 |2 cas  |a phorbol 13 acetate 12 myristate, 16561-29-8; chimaerin-beta3 protein, human; Chimerin Proteins; Protein Isoforms; rac GTP-Binding Proteins; Tetradecanoylphorbol Acetate 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MLBRB 
100 1 |a Zubeldia-Brenner, L. 
245 1 0 |a β3-Chimaerin, a novel member of the chimaerin Rac-GAP family 
260 |b Kluwer Academic Publishers  |c 2014 
270 1 0 |m Leskow, F.C.; Departamento de Ciencias Básicas, Universidad Nacional de Luján, 6700 Luján Buenos Aires, Argentina; email: federico@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Riccomagno, M.M., Hurtado, A., Wang, H., Macopson, J.G.J., Griner, E.M., The RacGAP β2-chimaerin selectively mediates axonal pruning in the hippocampus (2012) Cell, 149, pp. 1594-1606. , 3395473 22726444 10.1016/j.cell.2012.05.018 
504 |a Leskow, F.C., Holloway, B.A., Wang, H., Mullins, M.C., Kazanietz, M.G., The zebrafish homologue of mammalian chimerin Rac-GAPs is implicated in epiboly progression during development (2006) Proc Natl Acad Sci USA, 103, pp. 5373-5378. , 1459362 16569702 10.1073/pnas.0508585103 
504 |a Siliceo, M., Garcia-Bernal, D., Carrasco, S., Diaz-Flores, E., Leskow, F.C., Teixido, J., Kazanietz, M.G., Merida, I., β2-chimaerin provides a diacylglycerol-dependent mechanism for regulation of adhesion and chemotaxis of T cells (2006) Journal of Cell Science, 119 (1), pp. 141-152. , DOI 10.1242/jcs.02722 
504 |a Huang, J.-H., Yang, H.-W., Liu, S., Li, J., Jiang, S., Chen, Y.-H., The mechanism by which molecules containing the HIV-1 gp41 core-binding motif HXXNPF inhibit HIV-1 envelope glycoprotein-mediated syncytium formation (2007) Biochemical Journal, 403 (3), pp. 565-571. , DOI 10.1042/BJ20061275 
504 |a Leung, T., How, B.-E., Manser, E., Lim, L., Germ cell β-chimaerin, a new GTPase-activating protein for p21rac, is specifically expressed during the acrosomal assembly stage in rat testis (1993) Journal of Biological Chemistry, 268 (6), pp. 3813-3816 
504 |a Leung, T., How, B.E., Manser, E., Lim, L., Cerebellar beta 2-chimaerin, a GTPase-activating protein for p21 ras-related rac is specifically expressed in granule cells and has a unique N-terminal SH2 domain (1994) J Biol Chem, 269, pp. 12888-12892. , 8175705 
504 |a Hall, C., Michael, G.J., Cann, N., Ferrari, G., Teo, M., Jacobs, T., Monfries, C., Lim, L., α2-chimaerin, a Cdc42/Rac1 regulator, is selectively expressed in the rat embryonic nervous system and is involved in neuritogenesis in N1E-115 neuroblastoma cells (2001) Journal of Neuroscience, 21 (14), pp. 5191-5202 
504 |a Yuan, S., Miller, D.W., Barnett, G.H., Hahn, J.F., Williams, B.R., Identification and characterization of human beta 2-chimaerin: Association with malignant transformation in astrocytoma (1995) Cancer Res, 55, pp. 3456-3461. , 7614486 
504 |a Wang, H., Yang, C., Leskow, F.C., Sun, J., Canagarajah, B., Phospholipase Cc/diacylglycerol-dependent activation of beta2-chimaerin restricts EGF-induced Rac signaling (2006) EMBO J, 25, pp. 2062-2074. , 1462969 16628218 10.1038/sj.emboj.7601098 
504 |a Colón-González, F., Leskow, F.C., Kazanietz, M.G., Identification of an autoinhibitory mechanism that restricts C1 domain-mediated activation of the Rac-GAP alpha2-chimaerin (2008) J Biol Chem, 283, pp. 35247-35257. , 2596394 18826946 10.1074/jbc.M806264200 
504 |a Griner, E.M., Kazanietz, M.G., Protein kinase C and other diacylglycerol effectors in cancer (2007) Nature Reviews Cancer, 7 (4), pp. 281-294. , DOI 10.1038/nrc2110, PII NRC2110 
504 |a Canagarajah, B., Leskow, F.C., Ho, J.Y.S., Mischak, H., Saidi, L.F., Kazanietz, M.G., Hurley, J.H., Structural mechanism for lipid activation of the Rac-specific GAP, β2-chimaerin (2004) Cell, 119 (3), pp. 407-418. , DOI 10.1016/j.cell.2004.10.012, PII S009286740400995X 
504 |a Griner, E.M., Caino, M.C., Sosa, M.S., Colón-González, F., Chalmers, M.J., A novel cross-talk in diacylglycerol signaling: The Rac-GAP beta2-chimaerin is negatively regulated by protein kinase Cdelta-mediated phosphorylation (2010) J Biol Chem, 285, pp. 16931-16941. , 2878072 20335173 10.1074/jbc.M109.099036 
504 |a Siliceo, M., Mérida, I., T cell receptor-dependent tyrosine phosphorylation of beta2-chimaerin modulates its Rac-GAP function in T cells (2009) J Biol Chem, 284, pp. 11354-11363. , 2670141 19201754 10.1074/jbc.M806098200 
504 |a Batut, P.J., Dobin, A., Plessy, C., Carninci, P., Gingeras, T.R., High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression (2013) Genome Res, 23 (1), pp. 169-180 
504 |a Rojas-Duran, M.F., Gilbert, W.V., Alternative transcription start site selection leads to large differences in translation activity in yeast (2012) RNA, 18, pp. 2299-2305. , 3504680 23105001 10.1261/rna.035865.112 
504 |a Yang, C., Liu, Y., Leskow, F.C., Weaver, V.M., Kazanietz, M.G., Rac-GAP-dependent inhibition of breast cancer cell proliferation by β2-chimerin (2005) Journal of Biological Chemistry, 280 (26), pp. 24363-24370. , DOI 10.1074/jbc.M411629200 
504 |a Caloca, M.J., Garcia-Bermejo, M.L., Blumberg, P.M., Lewin, N.E., Kremmer, E., Mischak, H., Wang, S., Kazanietz, M.G., β2-Chimaerin is a novel target for diacylglycerol: Binding properties and changes in subcellular localization mediated by ligand binding to its C1 domain (1999) Proceedings of the National Academy of Sciences of the United States of America, 96 (21), pp. 11854-11859. , DOI 10.1073/pnas.96.21.11854 
504 |a Caloca, M.J., Fernandez, N., Lewin, N.E., Ching, D., Modali, R., Blumberg, P.M., Kazanietz, M.G., β2-chimaerin is a high affinity receptor for the phorbol ester tumor promoters (1997) Journal of Biological Chemistry, 272 (42), pp. 26488-26496. , DOI 10.1074/jbc.272.42.26488 
504 |a Dong, J.M., Smith, P., Hall, C., Lim, L., Promoter region of the transcriptional unit for human alpha 1-chimaerin, a neuron-specific GTPase-activating protein for p21rac (1995) Eur J Biochem, 227, pp. 636-646. , 7867622 10.1111/j.1432-1033.1995.tb20183.x 
504 |a Carninci, P., Sandelin, A., Lenhard, B., Katayama, S., Shimokawa, K., Ponjavic, J., Semple, C.A.M., Hayashizaki, Y., Genome-wide analysis of mammalian promoter architecture and evolution (2006) Nature Genetics, 38 (6), pp. 626-635. , DOI 10.1038/ng1789, PII N1789 
504 |a Ayoubi, T.A.Y., Van De Ven, W.J.M., Regulation of gene expression by alternative promoters (1996) FASEB Journal, 10 (4), pp. 453-460 
504 |a Ayoubi, T.A.Y., Creemers, J.W.M., Roebroek, A.J.M., Van De Ven, W.J.M., Expression of the dibasic proprotein processing enzyme furin is directed by multiple promoters (1994) Journal of Biological Chemistry, 269 (12), pp. 9298-9303 
504 |a Schibler, U., Sierra, F., Alternative promoters in developmental gene expression (1987) Annu Rev Genet, 21, pp. 237-257. , 2450521 10.1146/annurev.ge.21.120187.001321 
504 |a Davuluri, R.V., Grosse, I., Zhang, M.Q., Computational identification of promoters and first exons in the human genome (2001) Nature Genetics, 29 (4), pp. 412-417. , DOI 10.1038/ng780 
504 |a A user's guide to the encyclopedia of DNA elements (ENCODE) (2011) PLoS Biol, 9, p. 1001046. , ENCODE Project Consortium 10.1371/journal.pbio.1001046 
504 |a Rada-Iglesias, A., Ameur, A., Kapranov, P., Enroth, S., Komorowski, J., Gingeras, T.R., Wadelius, C., Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders (2008) Genome Research, 18 (3), pp. 380-392. , http://www.genome.org/cgi/reprint/18/3/380, DOI 10.1101/gr.6880908 
504 |a Rada-Iglesias, A., Wallerman, O., Koch, C., Ameur, A., Enroth, S., Clelland, G., Wester, K., Wadelius, C., Binding sites for metabolic disease related transcription factors inferred at base pair resolution by chromatin immunoprecipitation and genomic microarrays (2005) Human Molecular Genetics, 14 (22), pp. 3435-3447. , DOI 10.1093/hmg/ddi378 
504 |a Ernst, J., Kellis, M., Discovery and characterization of chromatin states for systematic annotation of the human genome (2010) Nat Biotechnol, 28, pp. 817-825. , 2919626 20657582 10.1038/nbt.1662 
504 |a Gardiner-Garden, M., Frommer, M., CpG islands in vertebrate genomes (1987) Journal of Molecular Biology, 196 (2), pp. 261-282 
504 |a Beg, A.A., Sommer, J.E., Martin, J.H., Scheiffele, P., α2-Chimaerin Is an Essential EphA4 Effector in the Assembly of Neuronal Locomotor Circuits (2007) Neuron, 55 (5), pp. 768-778. , DOI 10.1016/j.neuron.2007.07.036, PII S0896627307005818 
504 |a Caloca, M.J., Wang, H., Delemos, A., Wang, S., Kazanietz, M.G., Phorbol esters and related analogs regulate the subcellular localization of beta 2-chimaerin, a non-protein kinase C phorbol ester receptor (2001) J Biol Chem, 276, pp. 18303-18312. , 11278894 10.1074/jbc.M011368200 
504 |a Penas-Steinhardt, A., Barcos, L.S., Belforte, F.S., De Sereday, M., Vilariño, J., Functional characterization of TLR4 +3725 G/C polymorphism and association with protection against overweight (2012) PLoS One, 7, p. 50992. , 3519812 23239997 10.1371/journal.pone.0050992 
504 |a Wang, H., Kazanietz, M.G., P23/Tmp21 differentially targets the Rac-GAP beta2-chimaerin and protein kinase C via their C1 domains (2010) Mol Biol Cell, 21, pp. 1398-1408. , 2854097 20164256 10.1091/mbc.E09-08-0735 
504 |a Menna, P.L., Skilton, G., Leskow, F.C., Alonso, D.F., Gomez, D.E., Kazanietz, M.G., Inhibition of aggressiveness of metastatic mouse mammary carcinoma cells by the β2-chimaerin GAP domain (2003) Cancer Research, 63 (9), pp. 2284-2291 
504 |a Miyake, N., Chilton, J., Psatha, M., Cheng, L., Andrews, C., Human CHN1 mutations hyperactivate alpha2-chimaerin and cause Duane's retraction syndrome (2008) Science, 321, pp. 839-843. , 2593867 18653847 10.1126/science.1156121 
504 |a Caloca, M.J., Wang, H., Kazanietz, M.G., Characterization of the Rac-GAP (Rac-GTPase-activating protein) activity of β2-chimaerin, a 'non-protein kinase C' phorbol ester receptor (2003) Biochemical Journal, 375 (2), pp. 313-321. , DOI 10.1042/BJ20030727 
504 |a Gutierrez-Uzquiza, A., Colon-Gonzalez, F., Leonard, T.A., Canagarajah, B.J., Wang, H., Mayer, B.J., Hurley, J.H., Kazanietz, M.G., Coordinated activation of the Rac-GAP β2-chimaerin by an atypical proline-rich domain and diacylglycerol (2013) Nat Commun, 4, p. 1849. , 3700536 23673634 10.1038/ncomms2834 
520 3 |a Chimaerins are a family of diacylglycerol- and phorbol ester-regulated GTPase activating proteins (GAPs) for the small G-protein Rac. Extensive evidence indicates that these proteins play important roles in development, axon guidance, metabolism, cell motility, and T cell activation. Four isoforms have been reported to-date, which are products of CHN1 (α1- and α2-chimaerins) and CHN2 (β1- and β2-chimaerins) genes. Although these gene products are assumed to be generated by alternative splicing, bioinformatics analysis of the CHN2 gene revealed that β1- and β2-chimaerins are the products of alternative transcription start sites (TSSs) in different promoter regions. Furthermore, we found an additional TSS in CHN2 gene that leads to a novel product, which we named β3-chimaerin. Expression profile analysis revealed predominantly low levels for the β3-chimaerin transcript, with higher expression levels in epididymis, plasma blood leucocytes, spleen, thymus, as well as various areas of the brain. In addition to the prototypical SH2, C1, and Rac-GAP domains, β3-chimaerin has a unique N-terminal domain. Studies in cells established that β3-chimaerin has Rac-GAP activity and is responsive to phorbol esters. The enhanced responsiveness of β3-chimaerin for phorbol ester-induced translocation relative to β2-chimaerin suggests differential ligand accessibility to the C1 domain. © 2014 Springer Science+Business Media Dordrecht.  |l eng 
536 |a Detalles de la financiación: National Institutes of Health 
536 |a Detalles de la financiación: 20020090200714, PIP 11220110100573 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, R01-CA74197, R01-CA139120 
536 |a Detalles de la financiación: Acknowledgments This work is supported by grants PICT-2008-260 (ANCyP, Argentina), UBACyT 20020090200714 (UBA, Argentina), and PIP 11220110100573 (CONICET, Argentina) to Federico Coluccio Leskow., and Grants R01-CA74197 and R01-CA139120 (NIH) to Marcelo G. Kazanietz. 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina 
593 |a Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, United States 
593 |a Departamento de Ciencias Básicas, Universidad Nacional de Luján, 6700 Luján Buenos Aires, Argentina 
690 1 0 |a C1 DOMAIN 
690 1 0 |a CHIMAERIN 
690 1 0 |a CHN2 
690 1 0 |a PHORBOL ESTERS 
690 1 0 |a RAC-GAP 
690 1 0 |a ALPHA1 CHIMAERIN 
690 1 0 |a ALPHA2 CHIMAERIN 
690 1 0 |a BETA1 CHIMAERIN 
690 1 0 |a BETA2 CHIMAERIN 
690 1 0 |a BETA3 CHIMAERIN 
690 1 0 |a CHIMERIN 
690 1 0 |a GUANOSINE TRIPHOSPHATASE ACTIVATING PROTEIN 
690 1 0 |a ISOPROTEIN 
690 1 0 |a PHORBOL ESTER 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a CHIMAERIN-BETA3 PROTEIN, HUMAN 
690 1 0 |a CHIMERIN 
690 1 0 |a ISOPROTEIN 
690 1 0 |a PHORBOL 13 ACETATE 12 MYRISTATE 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a RAC PROTEIN 
690 1 0 |a ALTERNATIVE RNA SPLICING 
690 1 0 |a AMINO TERMINAL SEQUENCE 
690 1 0 |a ARTICLE 
690 1 0 |a BIOINFORMATICS 
690 1 0 |a CHN1 GENE 
690 1 0 |a CHN2 GENE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a ENZYME ANALYSIS 
690 1 0 |a EPIDIDYMIS 
690 1 0 |a EXON 
690 1 0 |a GENETIC ANALYSIS 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a HUMAN TISSUE 
690 1 0 |a LEUKOCYTE 
690 1 0 |a NUCLEOTIDE SEQUENCE 
690 1 0 |a PROMOTER REGION 
690 1 0 |a PROTEIN ANALYSIS 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a SPLEEN 
690 1 0 |a THYMUS 
690 1 0 |a TISSUE DISTRIBUTION 
690 1 0 |a TRANSCRIPTION INITIATION SITE 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a ANIMAL 
690 1 0 |a ANTIBODY SPECIFICITY 
690 1 0 |a CELL LINE 
690 1 0 |a CHEMISTRY 
690 1 0 |a CHLOROCEBUS AETHIOPS 
690 1 0 |a COS 1 CELL LINE 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a ENZYME ACTIVATION 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENE EXPRESSION PROFILING 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENE ORDER 
690 1 0 |a GENETICS 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR GENETICS 
690 1 0 |a ALTERNATIVE SPLICING 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a ANIMALS 
690 1 0 |a BASE SEQUENCE 
690 1 0 |a CELL LINE 
690 1 0 |a CERCOPITHECUS AETHIOPS 
690 1 0 |a CHIMERIN PROTEINS 
690 1 0 |a COS CELLS 
690 1 0 |a ENZYME ACTIVATION 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENE EXPRESSION PROFILING 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENE ORDER 
690 1 0 |a HUMANS 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a ORGAN SPECIFICITY 
690 1 0 |a PROMOTER REGIONS, GENETIC 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN INTERACTION DOMAINS AND MOTIFS 
690 1 0 |a PROTEIN ISOFORMS 
690 1 0 |a RAC GTP-BINDING PROTEINS 
690 1 0 |a TETRADECANOYLPHORBOL ACETATE 
700 1 |a Gutierrez-Uzquiza, A. 
700 1 |a Barrio-Real, L. 
700 1 |a Wang, H. 
700 1 |a Kazanietz, M.G. 
700 1 |a Leskow, F.C. 
773 0 |d Kluwer Academic Publishers, 2014  |g v. 41  |h pp. 2067-2076  |k n. 4  |p Mol. Biol. Rep.  |x 03014851  |w (AR-BaUEN)CENRE-3497  |t Molecular Biology Reports 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897492540&doi=10.1007%2fs11033-014-3055-3&partnerID=40&md5=c9fda4d844ca618272a51370c3519654  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11033-014-3055-3  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03014851_v41_n4_p2067_ZubeldiaBrenner  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03014851_v41_n4_p2067_ZubeldiaBrenner  |y Registro en la Biblioteca Digital 
961 |a paper_03014851_v41_n4_p2067_ZubeldiaBrenner  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75485