Ball Milling of Amaranth Starch-Enriched Fraction. Changes on Particle Size, Starch Crystallinity, and Functionality as a Function of Milling Energy

Starch-enriched fractions of amaranth grain were obtained from planetary ball milling and subsequently studied for particle size reduction, hydration properties, and crystallinity loss. Wide-angle X-ray scattering (WAXS) was used to evaluate the crystalline of starch-enriched fractions, using an ite...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Roa, D.F
Otros Autores: Santagapita, P.R, Buera, M.P, Tolaba, M.P
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer New York LLC 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12854caa a22011057a 4500
001 PAPER-14444
003 AR-BaUEN
005 20230518204458.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84905401892 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Roa, D.F. 
245 1 0 |a Ball Milling of Amaranth Starch-Enriched Fraction. Changes on Particle Size, Starch Crystallinity, and Functionality as a Function of Milling Energy 
260 |b Springer New York LLC  |c 2014 
270 1 0 |m Tolaba, M. P.; Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; email: mtolaba@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a (2000) AOAC 925.09. Solids (Total) and Moisture in Flour. Official Methods of Analysis, 17th Ed, , Association of Official Analytical Chemists, Gaithersburg, MD: Association of Official Analytical Chemists 
504 |a Avanza, M.V., Puppo, M.C., Añón, M.C., Rheological characterization of amaranth protein gels (2005) Food Hydrocolloids, 19 (5), pp. 889-898 
504 |a Bressani, R., The proteins of grain amaranth (1989) Food Review International, 5, pp. 13-38 
504 |a Bruckner, S., Estimation of the background in powder diffraction patterns through a robust smoothing procedure (2000) Journal of Applied Crystallography, 33, pp. 977-979 
504 |a Capron, I., Robert, P., Colonna, P., Brogly, M., Planchot, V., Starch in rubbery and glassy states by FTIR spectroscopy (2007) Carbohydrate Polymer, 68, pp. 249-259 
504 |a Carpinteri, A., Pugno, N., A fractal comminution approach to evaluate the drilling energy dissipation (2002) International Journal for Numerical and Analytical Methods in Geomechanics, 26, pp. 499-513 
504 |a Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N., Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? (2007) Advances in Biochemical Engineering/Biotechnology, 108, pp. 67-93 
504 |a Cheetham, N., Tao, L., Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study (1998) Carbohydrate Polymer, 36, pp. 277-284 
504 |a Chen, J.-J., Lii, C.-Y., Lu, S., Physicochemical and morphological analyses on damaged rice starches (2003) Journal of Food and Drug Analysis, 11, pp. 283-289 
504 |a Chiang, P., Yeh, A., Effect of soaking on wet-milling of rice (2002) Journal of Cereal Science, 35, pp. 85-94 
504 |a Courtois, F., Faessel, M., Bonazzi, C., Assessing breakage and cracks of parboiled rice kernels by image analysis techniques (2010) Food Control, 21, pp. 567-572 
504 |a Devi, F., Fibrianto, K., Torley, J., Bhandari, B., Physical properties of cryomilled rice starch (2009) Journal of Cereal Science, 49, pp. 278-284 
504 |a Fiedorowicz, M., Para, A., Structural and molecular properties of dialdehyde starch (2006) Carbohydrate Polymer, 63, pp. 360-366 
504 |a Frost, K., Kaminski, D., Kirwan, G., Lascaris, E., Shanks, R., Crystallinity and structure of starch using wide angle X-ray scattering (2009) Carbohydrate Polymer, 78, pp. 543-548 
504 |a Han, M., Chang, M., Kim, M., Changes in physicochemical properties of rice starch processed by ultra-fine pulverization (2007) Journal of Applied Biological Chemistry, 50, pp. 234-238 
504 |a Holmes, J.A., Contribution to the study of comminution modified form of Kick's law (1957) Transactions of the Instititution of Chemical Engineers, 35, pp. 125-141 
504 |a Huang, Z., Lu, J., Li, X., Tong, Z., Effect of mechanical activation on physico-chemical properties and structure of cassava starch (2007) Carbohydrate Polymer, 68, pp. 128-135 
504 |a Hukki, R.T., Proposal of Solomonic settlement between the theories of von Rittinger, Kick and Bond (1961) Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 220, pp. 403-408 
504 |a Jackson, D.S., Gomez, M.H., Waniska, R.D., Rooney, L.W., Effects of single-screw extrusion cooking on starch as measured by aqueous high-performance size-exclusion chromatography (1990) Cereal Chemistry, 67, pp. 529-532 
504 |a Jane, J., Shen, L., Wang, L., Maninga, C.C., Preparation and properties of small-particle corn starch (1992) Cereal Chemistry, 69, pp. 280-283 
504 |a Jiménez-Elizondo, N., Sobral, P.J.A., Menegalli, F.-C., Development of films based on blends of Amaranthus cruentus flour and polyvinyl alcohol (2009) Carbohydrate Polymer, 75, pp. 592-598 
504 |a Jiugao, Y., Ning, W., Xiaofei, M., The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol (2005) Starch/Staerke, 57, pp. 494-504 
504 |a Kavesh, S., Shultz, J., meaning and measurement of crystallinity in polymers (1969) Polymer Engineering and Science, 5, pp. 331-338 
504 |a Lehmann, J.W., Case history of grain amaranth as an alternative crop (1996) Cereal Foods World, 41, pp. 399-411 
504 |a Liu, T.Y., Ma, Y., Yu, S.F., Shi, J., Xue, S., The effect of ball milling treatment on structure and porosity of maize starch granule (2011) Innovative Food Science and Emerging Technologies, 12 (4), pp. 586-593 
504 |a Lopez-Rubio, A., Flanagan, M., Shrestha, A., Gidley, M., Gilbert, E., Molecular rearrangement of starch during in-vitro digestion: Towards a better understanding of enzyme resistant starch formation (2008) Biomacromolecules, 9, pp. 1951-1958 
504 |a Martinez-Bustos, F., Lopez-Soto, M., San Martin-Martinez, E., Zazueta-Morales, J., Velez-Medina, J., Effects of high energy milling on some functional properties of jicama starch (Pachyrrhizus ersus L. Urban) and cassava starch (Manihot esculenta Crantz) (2007) Journal of Food Engineering, 78, pp. 1212-1220 
504 |a Morrison, W., Tester, R., Properties of damaged starch granules. IV. Composition of ball-milled wheat starches and of fractions obtained on hydration (1994) Journal of Cereal Science, 20, pp. 69-77 
504 |a Puncha-Arnon, S., Uttapap, D., Rice starch vs. rice flour: differences in their properties when modified by heat-moisture treatment (2013) Carbohydrate Polymer, 91, pp. 85-91 
504 |a Rhodes, M., (2008) Introduction to Particle Technology, pp. 314-318. , New York, USA: Wiley 
504 |a Roa, D.F., Santagapita, P.R., Buera, M.P., Tolaba, M.P., Amaranth milling strategies and fraction characterization by FT-IR (2013) Food and Bioprocess Technology, , doi:10.1007/s11947-013-1050-7 
504 |a Sanguanpong, V., Chotineeranat, S., Piyachomkwan, K., Oates, C., Chinachoti, P., Sriroth, K., Preparation and structural properties of small-particle cassava starch (2003) Journal of the Science of Food and Agriculture, 83, pp. 760-768 
504 |a Savitzky, A., Golay, M.J.E., Smoothing and differentiation of data by simplified least squares procedures (1964) Analytical Chemistry, 36, pp. 1627-1639 
504 |a Sevenou, O., Hill, S.-E., Farhat, I.-A., Mitchell, J.-R., Organization of the external region of starch granules as determined by infrared spectroscopy (2002) International Journal of Biological Macromolecules, 31, pp. 79-85 
504 |a Shrestha, K., Ng, C., Lopez-Rubio, A., Blazek, J., Gilbert, E., Gidley, M., Enzyme resistance and structural organization in extruded high amylose maize starch (2010) Carbohydrate Polymer, 80 (3), pp. 699-710 
504 |a Silva, D., Couturier, M., Berrin, J., Buleon, A., Rouau, X., Effects of grinding processes on enzymatic degradation of wheat straw (2011) Bioresource Technology, 103, pp. 192-200 
504 |a Tamaki, S., Hisamatsu, M., Teranishi, K., Adachi, T., Yamada, T., Structural change of maize starch granules by ball-mill treatment (1998) Starch/Staerke, 50, pp. 342-348 
504 |a Tapia-Blácido, D., (2006) Edible films based on amaranth flour and starch, , PhD thesis. Department of Food Engineering, Campinas, SP, Brazil 
504 |a Xie, X., Liu, Q., Cui, S.W., Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates (2006) Food Research International, 39, pp. 332-341 
504 |a Zhang, Z., Zhao, S., Xiong, S., Morphology and physicochemical properties of mechanically activated rice starch (2010) Carbohydrate Polymer, 79, pp. 341-348 
504 |a Zobel, H., Starch crystal transformations and their industrial importance (1988) Starch/Staerke, 40, pp. 1-7 
504 |a Zuo, J.-Y., Knoerzer, K., Mawson, R., Kentish, S., Ashokkumar, M., The pasting properties of sonicated waxy rice starch suspensions (2009) Ultrasonic Sonochemistry, 16, pp. 462-468 
520 3 |a Starch-enriched fractions of amaranth grain were obtained from planetary ball milling and subsequently studied for particle size reduction, hydration properties, and crystallinity loss. Wide-angle X-ray scattering (WAXS) was used to evaluate the crystalline of starch-enriched fractions, using an iterative smoothing algorithm to estimate amorphous background scattering. This methodology was then used to determine initial crystallinity and monitor crystallinity loss during this process. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) showed that ball-milling treatment significantly decreased (p < 0.05) the intensity ratios of the bands at 1,039 and 1,014 cm-1 corresponding to the crystalline/amorphous part of starch structure. Starch crystallinity degree decreased by ball milling due to starch amorphization during this process. An excellent correlation was found between crystallinity degree obtained by WAXS and ATR-FTIR data for the whole ball-milled-analyzed samples. The energy required for size reduction was satisfactorily explained using a generalized grinding equation. A decrease of span and median diameter (D50) indicated sample homogenization during ball milling. Water absorption index and water solubility increased with crystallinity loss during process. The flour produced at the higher milling energy (6.52 kJ/g), with a mean size of 68 ± 1 μm, showed a low crystallinity degree (<5 %), and high water absorption and solubility indexes in comparison to the starch-enriched fraction sample. Particle activation provided by ball-milling process can offer chances for starch application such as sorbent agent in food or pharmaceutical industries. © 2014 Springer Science+Business Media New York.  |l eng 
536 |a Detalles de la financiación: Acknowledgements The authors acknowledge the financial support from PME-2006-01685, UBACYT (Project UBACyT 20020100100397 and 20020110200357), CONICET (PIP 100846), and ANPCYT (PICT 0928). PRS and MPB are members of CONICET. 
593 |a Industry Department, University of Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina 
593 |a Organic Chemistry Department, University of Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina 
593 |a National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina 
690 1 0 |a AMARANTH STARCH 
690 1 0 |a CRYSTALLINITY 
690 1 0 |a ENERGY FUNCTION 
690 1 0 |a FT-IR 
690 1 0 |a PLANETARY BALL MILLING 
690 1 0 |a TECHNOLOGICAL AND PHYSICAL PROPERTIES 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a ITERATIVE METHODS 
690 1 0 |a MILLING (MACHINING) 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a SOLUBILITY 
690 1 0 |a STARCH 
690 1 0 |a AMARANTH STARCHES 
690 1 0 |a CRYSTALLINITIES 
690 1 0 |a ENERGY FUNCTIONS 
690 1 0 |a FT-IR 
690 1 0 |a PLANETARY BALL MILLING 
690 1 0 |a BALL MILLING 
690 1 0 |a AMARANTHUS CAUDATUS 
700 1 |a Santagapita, P.R. 
700 1 |a Buera, M.P. 
700 1 |a Tolaba, M.P. 
773 0 |d Springer New York LLC, 2014  |g v. 7  |h pp. 2723-2731  |k n. 9  |p Food. Bioprocess Technol.  |x 19355130  |t Food and Bioprocess Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905401892&doi=10.1007%2fs11947-014-1283-0&partnerID=40&md5=cd9fd3be73924da6781b2e408fb69d04  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11947-014-1283-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19355130_v7_n9_p2723_Roa  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v7_n9_p2723_Roa  |y Registro en la Biblioteca Digital 
961 |a paper_19355130_v7_n9_p2723_Roa  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75397