Chitin hybrid materials reinforced with graphene oxide nanosheets: Chemical and mechanical characterisation

Chitin hybrid materials reinforced with graphene oxide nanosheets (nGO) have been prepared. The chitin : nGO ratio ranged from proportions where chitin was the main component to ones where nGO exceeded chitin. SEM and TEM images showed that high proportions of nGO may result in nanosheet association...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González, J.A
Otros Autores: Mazzobre, M.F, Villanueva, M.E, Díaz, L.E, Copello, G.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09753caa a22011897a 4500
001 PAPER-14400
003 AR-BaUEN
005 20230518204455.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84898005134 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a RSCAC 
100 1 |a González, J.A. 
245 1 0 |a Chitin hybrid materials reinforced with graphene oxide nanosheets: Chemical and mechanical characterisation 
260 |b Royal Society of Chemistry  |c 2014 
270 1 0 |m Copello, G.J.; Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), IQUIMEFA (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; email: gcopello@ffyb.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Wysokowski, M., Bazhenov, V.V., Tsurkan, M.V., Galli, R., Stelling, A.L., Stöcker, H., Kaiser, S., Ehrlich, H., (2013) Int. J. Biol. Macromol., 62, pp. 94-100 
504 |a Ehrlich, H., Maldonado, M., Spindler, K., Eckert, C., Hanke, T., Born, R., Goebel, C., Worch, H., (2007) J. Exp. Zool., Part B, 308, pp. 347-356 
504 |a Ravi Kumar, M.N., (2000) React. Funct. Polym., 46, pp. 1-27 
504 |a Shahidi, F., Arachchi, J.K.V., Jeon, Y.-J., (1999) Trends Food Sci. Technol., 10, pp. 37-51 
504 |a Muzzarelli, R., (1983) Carbohydr. Polym., 3, pp. 53-75 
504 |a Tamura, H., Furuike, T., Nair, S.V., Jayakumar, R., (2011) Carbohydr. Polym., 84, pp. 820-824 
504 |a Wolman, F., Copello, G., Mebert, A., Targovnik, A., Miranda, M., Navarro Del Cañizo, A., Díaz, L., Cascone, O., (2010) Eur. Food Res. Technol., 231, pp. 181-188 
504 |a Copello, G.J., Mebert, A.M., Raineri, M., Pesenti, M.P., Diaz, L.E., (2011) J. Hazard. Mater., 186, pp. 932-939 
504 |a Sharma, M., Mukesh, C., Mondal, D., Prasad, K., (2013) RSC Adv., 3, pp. 18149-18155 
504 |a Spinde, K., Kammer, M., Freyer, K., Ehrlich, H., Vournakis, J.N., Brunner, E., (2011) Chem. Mater., 23, pp. 2973-2978 
504 |a Ehrlich, H., Simon, P., Motylenko, M., Wysokowski, M., Bazhenov, V.V., Galli, R., Stelling, A.L., Meyer, D.C., (2013) J. Mater. Chem. B, 1, pp. 5092-5099 
504 |a Wysokowski, M., Motylenko, M., Stocker, H., Bazhenov, V.V., Langer, E., Dobrowolska, A., Czaczyk, K., Ehrlich, H., (2013) J. Mater. Chem. B, 1, pp. 6469-6476 
504 |a Barber, P.S., Griggs, C.S., Bonner, J.R., Rogers, R.D., (2013) Green Chem., 15, pp. 601-607 
504 |a Desbrieres, J., Babak, V., (2010) Soft Matter, 6, pp. 2358-2363 
504 |a Pan, Y., Wu, T., Bao, H., Li, L., (2011) Carbohydr. Polym., 83, pp. 1908-1915 
504 |a Anglès, M.N., Dufresne, A., (2000) Macromolecules, 33, pp. 8344-8353 
504 |a Lin, N., Dufresne, A., (2013) Macromolecules, 46, pp. 5570-5583 
504 |a Feng, H., Li, Y., Li, J., (2012) RSC Adv., 2, pp. 6988-6993 
504 |a Daniel-Da-Silva, A.L., Moreira, J., Neto, R., Estrada, A.C., Gil, A.M., Trindade, T., (2012) Carbohydr. Polym., 87, pp. 328-335 
504 |a Azeredo, H.M.C., Miranda, K.W.E., Ribeiro, H.L., Rosa, M.F., Nascimento, D.M., (2012) J. Food Eng., 113, pp. 505-510 
504 |a Tang, C., Xiang, L., Su, J., Wang, K., Yang, C., Zhang, Q., Fu, Q., (2008) J. Phys. Chem. B, 112, pp. 3876-3881 
504 |a Wang, S.-F., Shen, L., Zhang, W.-D., Tong, Y.-J., (2005) Biomacromolecules, 6, pp. 3067-3072 
504 |a Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S., (2011) Prog. Mater. Sci., 56, pp. 1178-1271 
504 |a Sham, A.Y.W., Notley, S.M., (2013) Soft Matter, 9, pp. 6645-6653 
504 |a Liao, K.-H., Lin, Y.-S., Macosko, C.W., Haynes, C.L., (2011) ACS Appl. Mater. Interfaces, 3, pp. 2607-2615 
504 |a Pinto, A.M., Gonçalves, I.C., Magalhães, F.D., (2013) Colloids Surf., B, 111, pp. 188-202 
504 |a Yang, X., Chen, C., Li, J., Zhao, G., Ren, X., Wang, X., (2012) RSC Adv., 2, pp. 8821-8826 
504 |a Krishnamoorthy, K., Veerapandian, M., Yun, K., Kim, S.-J., (2013) Carbon, 53, pp. 38-49 
504 |a Botas, C., Alvarez, P., Blanco, C., Gutierrez, M.D., Ares, P., Zamani, R., Arbiol, J., Menendez, R., (2012) RSC Adv., 2, pp. 9643-9650 
504 |a Wan, C., Frydrych, M., Chen, B., (2011) Soft Matter, 7, pp. 6159-6166 
504 |a He, A., Lei, B., Cheng, C., Li, S., Ma, L., Sun, S., Zhao, C., (2013) RSC Adv., 3, pp. 22120-22129 
504 |a He, Y., Zhang, N., Gong, Q., Qiu, H., Wang, W., Liu, Y., Gao, J., (2012) Carbohydr. Polym., 88, pp. 1100-1108 
504 |a Li, R., Liu, C., Ma, J., (2011) Carbohydr. Polym., 84, pp. 631-637 
504 |a Zhang, N., Qiu, H., Si, Y., Wang, W., Gao, J., (2011) Carbon, 49, pp. 827-837 
504 |a Qiu, J.-D., Huang, J., Liang, R.-P., (2011) Sens. Actuators, B, 160, pp. 287-294 
504 |a Alhwaige, A.A., Agag, T., Ishida, H., Qutubuddin, S., (2013) RSC Adv., 3, pp. 16011-16020 
504 |a Cai, C.-J., Xu, M.-W., Bao, S.-J., Lei, C., Jia, D.-Z., (2012) RSC Adv., 2, pp. 8172-8178 
504 |a Wang, Y., Zhang, P., Liu, C.F., Huang, C.Z., (2013) RSC Adv., 3, pp. 9240-9246 
504 |a Feng, Y., Zhang, X., Shen, Y., Yoshino, K., Feng, W., (2012) Carbohydr. Polym., 87, pp. 644-649 
504 |a Han, D., Yan, L., Chen, W., Li, W., Bangal, P.R., (2011) Carbohydr. Polym., 83, pp. 966-972 
504 |a Han, D., Yan, L., Chen, W., Li, W., (2011) Carbohydr. Polym., 83, pp. 653-658 
504 |a Kim, H.M., Lee, J.K., Lee, H.S., (2011) Thin Solid Films, 519, pp. 7766-7771 
504 |a Guo, Y., Duan, B., Zhou, J., Zhu, P., (2014) Cellulose, pp. 1-11 
504 |a Hummers, W.S., Offeman, R.E., (1958) J. Am. Chem. Soc., 80, p. 1339 
504 |a Bao, Q., Zhang, D., Qi, P., (2011) J. Colloid Interface Sci., 360, pp. 463-470 
504 |a Tamura, H., Nagahama, H., Tokura, S., (2006) Cellulose, 13, pp. 357-364 
504 |a Yang, Y.M., Hu, W., Wang, X.D., Gu, X.S., (2007) J. Mater. Sci.: Mater. Med., 18, pp. 2117-2121 
504 |a Saito, Y., Putaux, J.-L., Okano, T., Gaill, F., Chanzy, H., (1997) Macromolecules, 30, pp. 3867-3873 
504 |a Tanner, S.F., Chanzy, H., Vincendon, M., Roux, J.C., Gaill, F., (1990) Macromolecules, 23, pp. 3576-3583 
504 |a Jang, M.-K., Kong, B.-G., Jeong, Y.-I., Lee, C.H., Nah, J.-W., (2004) J. Polym. Sci., Part A: Polym. Chem., 42, pp. 3423-3432 
504 |a Schleuter, D., Günther, A., Paasch, S., Ehrlich, H., Kljajić, Z., Hanke, T., Bernhard, G., Brunner, E., (2013) Carbohydr. Polym., 92, pp. 712-718 
504 |a Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Ruoff, R.S., (2007) Carbon, 45, pp. 1558-1565 
504 |a McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Aksay, I.A., (2007) Chem. Mater., 19, pp. 4396-4404 
504 |a Guinesi, L.S., Cavalheiro, É.T.G., (2006) Thermochim. Acta, 444, pp. 128-133 
504 |a Tzoumaki, M.V., Moschakis, T., Biliaderis, C.G., (2013) Carbohydr. Polym., 95, pp. 324-331 
520 3 |a Chitin hybrid materials reinforced with graphene oxide nanosheets (nGO) have been prepared. The chitin : nGO ratio ranged from proportions where chitin was the main component to ones where nGO exceeded chitin. SEM and TEM images showed that high proportions of nGO may result in nanosheet association. FTIR, 13C solid-state NMR and DSC analyses showed that the interaction among the components would not involve the formation of new molecular bonds. nGO was shown to act as a filler that induces structural rearrangements in chitin which lead to new hydrogen bonds among the chains. The mechanical stability proved to be higher when the nGO content in the hybrid was similar to or higher than that of chitin. The rheological behaviour of the material was shown to become more solid-like with increasing nGO content. The nGO did not interfere with lysozyme activity on chitin chains, indicating that these materials would be biodegradable. © 2014 the Partner Organisations.  |l eng 
593 |a Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), IQUIMEFA (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires y CONICET, Intendente Guiraldes 2160, CP 1428, Buenos Aires, Argentina 
690 1 0 |a CHAINS 
690 1 0 |a GRAPHENE 
690 1 0 |a HYBRID MATERIALS 
690 1 0 |a HYDROGEN BONDS 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 
690 1 0 |a REINFORCEMENT 
690 1 0 |a FTIR 
690 1 0 |a GRAPHENE OXIDE NANOSHEETS 
690 1 0 |a MECHANICAL CHARACTERISATION 
690 1 0 |a MOLECULAR BONDS 
690 1 0 |a RHEOLOGICAL BEHAVIOUR 
690 1 0 |a SEM AND TEM 
690 1 0 |a SOLID STATE NMR 
690 1 0 |a STRUCTURAL REARRANGEMENT 
690 1 0 |a CHITIN 
700 1 |a Mazzobre, M.F. 
700 1 |a Villanueva, M.E. 
700 1 |a Díaz, L.E. 
700 1 |a Copello, G.J. 
773 0 |d Royal Society of Chemistry, 2014  |g v. 4  |h pp. 16480-16488  |k n. 32  |p RSC Adv.  |x 20462069  |t RSC Advances 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898005134&doi=10.1039%2fc3ra47986b&partnerID=40&md5=c7024a21202e95f3f9f05c3b7195b5ed  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c3ra47986b  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_20462069_v4_n32_p16480_Gonzalez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20462069_v4_n32_p16480_Gonzalez  |y Registro en la Biblioteca Digital 
961 |a paper_20462069_v4_n32_p16480_Gonzalez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75353