Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome

The relationship between human chorionic gonadotropin and ovarian hyperstimulation syndrome (OHSS) is partially mediated by vascular endothelial growth factor A (VEGF). The aim of this study was to investigate the effects of VEGF inhibition on the development of corpora lutea (CL) and cystic structu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Scotti, L.
Otros Autores: Abramovich, D., Pascuali, N., Irusta, G., Meresman, G., Tesone, M., Parborell, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 24333caa a22021257a 4500
001 PAPER-14391
003 AR-BaUEN
005 20230518204454.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84906856877 
024 7 |2 cas  |a aflibercept, 845771-78-0, 862111-32-8; estradiol, 50-28-2; occludin, 176304-61-3; progesterone, 57-83-0; vasculotropin A, 489395-96-2; vasculotropin receptor, 301253-48-5; vasculotropin, 127464-60-2; aflibercept; Angiogenesis Inhibitors; Claudin-5; Cldn5 protein, rat; Estradiol; Flt1 protein, rat; Occludin; Ocln protein, rat; Progesterone; Receptors, Vascular Endothelial Growth Factor; Recombinant Fusion Proteins; Vascular Endothelial Growth Factor A; vascular endothelial growth factor A, rat; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JSBBE 
100 1 |a Scotti, L. 
245 1 0 |a Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome 
260 |b Elsevier Ltd  |c 2014 
270 1 0 |m Parborell, F.; Instituto de Biología y Medicina Experimental (IByME), CONICET, Buenos Aires, Argentina; email: fparborell@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Delvinge, A., Rozenberg, S., Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): A review (2002) Human Reproduction Update, 8 (6), pp. 559-577. , DOI 10.1093/humupd/8.6.559 
504 |a Aboulghar, M.A., Mansour, R.T., Ovarian hyperstimulation syndrome: Classifications and critical analysis of preventive measures (2003) Human Reproduction Update, 9 (3), pp. 275-289. , DOI 10.1093/humupd/dmg018 
504 |a Rizk, B., Aboulghar, M., Modern management of ovarian hyperstimulation syndrome (1991) Hum. Reprod., 6, pp. 1082-1087 
504 |a Fiedler, K., Ezcurra, D., Predicting and preventing ovarian hyperstimulation syndrome (OHSS): The need for individualized not standardized treatment (2012) Reprod. Biol. Endocrinol., 10, p. 32 
504 |a Golan, A., Ron-El, R., Herman, A., Soffer, Y., Weinraub, Z., Caspi, E., Ovarian hyperstimulation syndrome: An updata review (1989) Obstetrical and Gynecological Survey, 44 (6), pp. 430-440 
504 |a Gomez, R., Soares, S.R., Busso, C., Garcia-Velasco, J.A., Simon, C., Pellicer, A., Physiology and pathology of ovarian hyperstimulation syndrome (2010) Semin. Reprod. Med., 28, pp. 448-457 
504 |a Nastri, C.O., Ferriani, R.A., Rocha, I.A., Martins, W.P., Ovarian hyperstimulation syndrome: Pathophysiology and prevention (2010) J. Assist. Reprod. Genet., 27, pp. 121-128 
504 |a Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S., Dvorak, H.F., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid (1983) Science, 219, pp. 983-985 
504 |a Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L., Schuh, A.C., Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice (1995) Nature, 376, pp. 62-66 
504 |a Verheul, H.M.W., Hoekman, K., Jorna, A.S., Smit, E.F., Pinedo, H.M., Targeting vascular endothelial growth factor blockade: Ascites and pleural effusion formation (2000) Oncologist, 5 (SUPPL. 1), pp. 45-50 
504 |a Abramovich, D., Rodriguez, C.A., Hernandez, F., Tesone, M., Parborell, F., Spatiotemporal analysis of the protein expression of angiogenic factors and their related receptors during folliculogenesis in rats with and without hormonal treatment (2009) Reproduction, 137, pp. 309-320 
504 |a Endo, T., Kitajima, Y., Nishikawa, A., Manase, K., Shibuya, M., Kudo, R., Cyclic changes in expression of mRNA of vascular endothelial growth factor, its receptors Flt-1 and KDR/Flk-1, and Ets-1 in human corpora lutea (2001) Fertility and Sterility, 76 (4), pp. 762-768. , DOI 10.1016/S0015-0282(01)02012-X, PII S001502820102012X 
504 |a Phillips, H.S., Hains, J., Leung, D.W., Ferrara, N., Vascular endothelial growth factor is expressed in rat corpus luteum (1990) Endocrinology, 127 (2), pp. 965-967 
504 |a Hazzard, T.M., Nayak, N.R., Brenner, R.M., Stouffer, R.L., Dynamic expression of receptors for vascular endothelial growth factor (VEGFR1, VEGFR2) and angiopioetins (TIE-2) in the primate corpus luteum (CL) during the menstrual cycle (2000) Biol. Reprod., 62, p. 271 
504 |a Yamamoto, S., Konishi, I., Mandai, M., Kuroda, H., Komatsu, T., Nanbu, K., Sakahara, H., Mori, T., Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: Correlation with clinicopathology and patient survival, and analysis of serum VEGF levels (1997) British Journal of Cancer, 76 (9), pp. 1221-1227 
504 |a Yan, Z., Weich, H.A., Bernart, W., Breckwoldt, M., Neulen, J., Vascular endothelial growth factor (VEGF) messenger ribonucleic acid (mRNA) expression in luteinized human granulosa cells in vitro (1993) Journal of Clinical Endocrinology and Metabolism, 77 (6), pp. 1723-1725. , DOI 10.1210/jc.77.6.1723 
504 |a Neulen, J., Yan, Z., Raczek, S., Weindel, K., Keck, C., Weich, H.A., Marme, D., Breckwoldt, M., Human chorionic gonadotropin-dependent expression of vascular endothelial growth factor/vascular permeability factor in human granulosa cells: Importance in ovarian hyperstimulation syndrome (1995) J. Clin. Endocrinol. Metab., 80, pp. 1967-1971 
504 |a Albert, C., Garrido, N., Mercader, A., Rao, C.V., Remohi, J., Simon, C., Pellicer, A., The role of endothelial cells in the pathogenesis of ovarian hyperstimulation syndrome (2002) Molecular Human Reproduction, 8 (5), pp. 409-418 
504 |a Groten, T., Fraser, H.M., Duncan, W.C., Konrad, R., Kreienberg, R., Wulff, C., Cell junctional proteins in the human corpus luteum: Changes during the normal cycle and after HCG treatment (2006) Human Reproduction, 21 (12), pp. 3096-3102. , DOI 10.1093/humrep/del286 
504 |a Rodewald, M., Herr, D., Fraser, H.M., Hack, G., Kreienberg, R., Wulff, C., Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor (2007) Molecular Human Reproduction, 13 (11), pp. 781-789. , DOI 10.1093/molehr/gam066 
504 |a Dejana, E., Endothelial cell-cell junctions: Happy together (2004) Nature Reviews Molecular Cell Biology, 5 (4), pp. 261-270. , DOI 10.1038/nrm1357 
504 |a Schneeberger, E.E., Lynch, R.D., The tight junction: A multifunctional complex (2004) Am. J. Physiol. Cell Physiol., 286, pp. 1213-C1228 
504 |a Rodewald, M., Herr, D., Duncan, W.C., Fraser, H.M., Hack, G., Konrad, R., Gagsteiger, F., Wulff, C., Molecular mechanisms of ovarian hyperstimulation syndrome: Paracrine reduction of endothelial claudin 5 by hCG in vitro is associated with increased endothelial permeability (2009) Hum. Reprod., 24, pp. 1191-1199 
504 |a Lampugnani, M.G., Endothelial cell-to-cell junctions: Adhesion and signaling in physiology and pathology (2012) Cold Spring Harb. Perspect. Med., 2. , 10.1101/cshperspect.a006528 
504 |a Bazzoni, G., Dejana, E., Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis (2004) Physiological Reviews, 84 (3), pp. 869-901. , DOI 10.1152/physrev.00035.2003 
504 |a Dejana, E., Tournier-Lasserve, E., Weinstein, B.M., The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications (2009) Dev. Cell, 16, pp. 209-221 
504 |a Pedram, A., Razandi, M., Levin, E.R., Deciphering vascular endothelial cell growth factor/vascular permeability factor signaling to vascular permeability inhibition by atrial natriuretic peptide (2002) Journal of Biological Chemistry, 277 (46), pp. 44385-44398. , DOI 10.1074/jbc.M202391200 
504 |a Krasnow, J.S., Zeleznik, A.J., Berga, S.L., Yeo, K.-T., Guzick, D.S., Vascular permeability factor and vascular endothelial growth factor in ovarian hyperstimulation syndrome: A preliminary report (1996) Fertility and Sterility, 65 (3), pp. 552-555 
504 |a Geva, E., Jaffe, R.B., Role of vascular endothelial growth factor in ovarian physiology and pathology (2000) Fertil. Steril., 74, pp. 429-438 
504 |a Lee, A., Burry, K.A., Christenson, L.K., Patton, P.E., Stouffer, R.L., Vascular endothelial growth factor levels in serum and follicular fluid of patients undergoing in vitro fertilization (1997) Fertility and Sterility, 68 (2), pp. 305-311. , DOI 10.1016/S0015-0282(97)81520-8, PII S0015028297002057 
504 |a Abramovich, D., Parborell, F., Tesone, M., Effect of a vascular endothelial growth factor (VEGF) inhibitory treatment on the folliculogenesis and ovarian apoptosis in gonadotropin-treated prepubertal rats (2006) Biology of Reproduction, 75 (3), pp. 434-441. , DOI 10.1095/biolreprod.106.051052 
504 |a Parborell, F., Abramovich, D., Tesone, M., Intrabursal administration of the antiangiopoietin 1 antibody produces a delay in rat follicular development associated with an increase in ovarian apoptosis mediated by changes in the expression of BCL2 related genes (2008) Biology of Reproduction, 78 (3), pp. 506-513. , http://www.biolreprod.org/cgi/reprint/78/3/506?ck=nck, DOI 10.1095/biolreprod.107.063610 
504 |a Kitajima, Y., Endo, T., Manase, K., Nishikawa, A., Shibuya, M., Kudo, R., Gonadotropin-releasing hormone agonist administration reduced vascular endothelial growth factor (VEGF), VEGF receptors, and vascular permeability of the ovaries of hyperstimulated rats (2004) Fertility and Sterility, 81 (SUPPL. 1), pp. 842-849. , DOI 10.1016/j.fertnstert.2003.11.012, PII S0015028203030607 
504 |a Kitajima, Y., Endo, T., Nagasawa, K., Manase, K., Honnma, H., Baba, T., Hayashi, T., Saito, T., Hyperstimulation and a gonadotropin-releasing hormone agonist modulate ovarian vascular permeability by altering expression of the tight junction protein claudin-5 (2006) Endocrinology, 147 (2), pp. 694-699. , http://endo.endojournals.org/cgi/reprint/147/2/694, DOI 10.1210/en.2005-0700 
504 |a Irusta, G., Parborell, F., Peluffo, M., Manna, P.R., Gonzalez-Calvar, S.I., Calandra, R., Stocco, D.M., Tesone, M., Steroidogenic acute regulatory protein in ovarian follicles of gonadotropin-stimulated rats is regulated by a gonadotropin-releasing hormone agonist (2003) Biology of Reproduction, 68 (5), pp. 1577-1583. , DOI 10.1095/biolreprod.102.009944 
504 |a Irusta, G., Parborell, F., Tesone, M., Inhibition of cytochrome P-450C17 enzyme by a GnRH agonist in ovarian follicles from gonadotropin-stimulated rats (2007) Am. J. Physiol. Endocrinol. Metab., 292, pp. 1456-E1464 
504 |a Woodruff, T.K., D'Agostino, J., Schwartz, N.B., Mayo, K.E., Dynamic changes in inhibin messenger RNAs in rat ovarian follicles during the reproductive cycle (1988) Science, 239, pp. 1296-1299 
504 |a Andreu, C., Parborell, F., Vanzulli, S., Chemes, H., Tesone, M., Regulation of follicular luteinization by a gonadotropin-releasing hormone agonist: Relationship between steroidogenesis and apoptosis (1998) Molecular Reproduction and Development, 51 (3), pp. 287-294. , DOI 10.1002/(SICI)1098-2795(1998 11)51:3<287::AI D-MRD8>3.0.CO;2-L 
504 |a Sadrkhanloo, R., Hofeditz, C., Erickson, G.F., Evidence for widespread atresia in the hypophysectomized estrogen-treated rat (1987) Endocrinology, 120 (1), pp. 146-155 
504 |a Augustin, H.G., Braun, K., Telemenakis, I., Modlich, U., Kuhn, W., Ovarian angiogenesis. Phenotypic characterization of endothelial cells in a physiological model of blood vessel growth and regression (1995) Am. J. Pathol., 147, pp. 339-351 
504 |a Redmer, D.A., Doraiswamy, V., Bortnem, B.J., Fisher, K., Jablonka-Shariff, A., Grazul-Bilska, A.T., Reynolds, L.P., Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum (2001) Biology of Reproduction, 65 (3), pp. 879-889 
504 |a Cherry, J.A., Hou, X., Rueda, B.R., Davis, J.S., Townson, D.H., Microvascular endothelial cells of the bovine corpus luteum: A comparative examination of the estrous cycle and pregnancy (2008) Journal of Reproduction and Development, 54 (3), pp. 183-191. , http://www.jstage.jst.go.jp/article/jrd/54/3/183/_pdf, DOI 10.1262/jrd.19182 
504 |a Abramovich, D., Irusta, G., Parborell, F., Tesone, M., Intrabursal injection of vascular endothelial growth factor trap in eCG-treated prepubertal rats inhibits proliferation and increases apoptosis of follicular cells involving the PI3K/AKT signaling pathway (2010) Fertil. Steril., 93, pp. 1369-1377 
504 |a Levin, E.R., Rosen, G.F., Cassidenti, D.L., Yee, B., Meldrum, D., Wisot, A., Pedram, A., Role of vascular endothelial cell growth factor in ovarian hyperstimulation syndrome (1998) Journal of Clinical Investigation, 102 (11), pp. 1978-1985 
504 |a Gomez, R., Simon, C., Remohi, J., Pellicer, A., Vascular endothelial growth factor receptor-2 activation induces vascular permeability in hyperstimulated rats, and this effect is prevented by receptor blockade (2002) Endocrinology, 143 (11), pp. 4339-4348. , DOI 10.1210/en.2002-220204 
504 |a Ozcakir, H.T., Giray, S.G., Ozbilgin, M.K., Uyar, Y., Lacin, S., Caglar, H., Immunohistochemical detection of transforming growth factor-α, epidermal growth factor, and vascular endothelial growth factor expression in hyperstimulated rat ovary (2005) Acta Obstetricia et Gynecologica Scandinavica, 84 (9), pp. 887-893. , DOI 10.1111/j.0001-6349.2005.00586.x 
504 |a Scotti, L., Irusta, G., Abramovich, D., Tesone, M., Parborell, F., Administration of a gonadotropin-releasing hormone agonist affects corpus luteum vascular stability and development and induces luteal apoptosis in a rat model of ovarian hyperstimulation syndrome (2011) Mol. Cell Endocrinol., 335, pp. 116-125 
504 |a Gharbiya, L., Iannetti, F., De Vico, U., Mungo, M.L., Marenco, M., Visual and anatomical outcomes of intravitreal aflibercept for treatment-resistant neovascular age-related macular degeneration (2014) Biomed. Res. Int., 2014. , 273754 
504 |a Chang, A.A., Li, H., Broadhead, G.K., Hong, T., Schlub, T.E., Wijeyakumar, W., Zhu, M., Intravitreal aflibercept for treatment-resistant neovascular age-related macular degeneration (2014) Ophthalmology, 121, pp. 188-192 
504 |a Navot, D., Bergh, P.A., Laufer, N., Ovarian hyperstimulation syndrome in novel reproductive technologies: Prevention and treatment (1992) Fertil. Steril., 58, pp. 249-261 
504 |a Stocco, C., Telleria, C., Gibori, G., The molecular control of corpus luteum formation, function, and regression (2007) Endocrine Reviews, 28 (1), pp. 117-149. , http://edrv.endojournals.org/cgi/reprint/28/1/117, DOI 10.1210/er.2006-0022 
504 |a Rizk, B., Aboulghar, M., Smitz, J., Ron-El, R., The role of vascular endothelial growth factor and interleukins in the pathogenesis of severe ovarian hyperstimulation syndrome (1997) Human Reproduction Update, 3 (3), pp. 255-266. , DOI 10.1093/humupd/3.3.255 
504 |a Reynolds, L.P., Grazul-Bilska, A.T., Redmer, D.A., Angiogenesis in the corpus luteum (2000) Endocrine, 12 (1), pp. 1-9 
504 |a Fraser, H.M., Wilson, H., Wulff, C., Rudge, J.S., Wiegand, S.J., Administration of vascular endothelial growth factor Trap during the 'post-angiogenic' period of the luteal causes rapid functional luteolysis and selective endothelial cell death in the marmoset (2006) Reproduction, 132 (4), pp. 589-600. , DOI 10.1530/rep.1.01064 
504 |a Klagsbrun, M., D'Amore, P.A., Vascular endothelial growth factor and its receptors (1996) Cytokine and Growth Factor Reviews, 7 (3), pp. 259-270. , DOI 10.1016/S1359-6101(96)00027-5 
504 |a Wulff, C., Wilson, H., Wiegand, S.J., Rudge, J.S., Fraser, H.M., Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor trap R1R2 (2002) Endocrinology, 143 (7), pp. 2797-2807. , DOI 10.1210/en.143.7.2797 
504 |a Sato, S., Kanno, N., Abe, M., Ito Shitara, K., Shibuya, M., Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction (2000) Ann. N.Y. Acad. Sci., 902, pp. 201-205 
504 |a Shen, B.-Q., Lee, D.Y., Gerber, H.-P., Keyt, B.A., Ferrara, N., Zioncheck, T.F., Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro (1998) Journal of Biological Chemistry, 273 (45), pp. 29979-29985. , DOI 10.1074/jbc.273.45.29979 
504 |a Fujio, Y., Walsh, K., Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner (1999) J. Biol. Chem., 274, pp. 16349-16354 
504 |a Banerjee, S., Mehta, S., Haque, I., Sengupta, K., Dhar, K., Kambhampati, S., Van Veldhuizen, P.J., Banerjee, S.K., VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3K axis (2008) Biochemistry, 47 (11), pp. 3345-3351. , DOI 10.1021/bi8000352 
504 |a Walz, A., Keck, C., Weber, H., Kissel, C., Pietrowski, D., Effects of luteinizing hormone and human chorionic gonadotropin on corpus luteum cells in a spheroid cell culture system (2005) Molecular Reproduction and Development, 72 (1), pp. 98-104. , DOI 10.1002/mrd.20325 
504 |a Morita, K., Sasaki, H., Furuse, M., Tsukita, S., Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells (1999) Journal of Cell Biology, 147 (1), pp. 185-194. , DOI 10.1083/jcb.147.1.185 
504 |a Lippoldt, A., Liebner, S., Andbjer, B., Kalbacher, H., Wolburg, H., Haller, H., Fuxe, K., Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C (2000) NeuroReport, 11 (7), pp. 1427-1431 
504 |a Hirase, T., Staddon, J.M., Saitou, M., Ando-Akatsuka, Y., Itoh, M., Furuse, M., Fujimoto, K., Rubin, L.L., Occludin as a possible determinant of tight junction permeability in endothelial cells (1997) Journal of Cell Science, 110 (14), pp. 1603-1613 
504 |a Antonetti, D.A., Barber, A.J., Khin, S., Lieth, E., Tarbell, J.M., Gardner, T.W., Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content. Vascular endothelial growth factor decreases occludin in retinal endothelial cells (1998) Diabetes, 47 (12), pp. 1953-1959 
504 |a Herr, D., Fraser, H.M., Konrad, R., Holzheu, I., Kreienberg, R., Wulff, C., Human chorionic gonadotropin controls luteal vascular permeability via vascular endothelial growth factor by down-regulation of a cascade of adhesion proteins (2013) Fertil. Steril., 99, pp. 1749-1758 
520 3 |a The relationship between human chorionic gonadotropin and ovarian hyperstimulation syndrome (OHSS) is partially mediated by vascular endothelial growth factor A (VEGF). The aim of this study was to investigate the effects of VEGF inhibition on the development of corpora lutea (CL) and cystic structures, steroidogenesis, apoptosis, cell proliferation, endothelial cell area, VEGF receptors (KDR and Flt-1), claudin-5 and occludin levels in ovaries from an OHSS rat model. The VEGF inhibitor used (VEGF receptor-1 (FLT-1)/Fc chimera, TRAP) decreased the concentrations of progesterone and estradiol as well as the percentage of CL and cystic structures in OHSS rats, and increased apoptosis in CL. Endothelial cell area in CL and KDR expression and its phosphorylation were increased, whereas claudin-5 and occludin levels were decreased in the OHSS compared to the control TRAP reversed these parameters. Our findings indicate that VEGF inhibition prevents the early onset of OHSS and decreases its severity in rats. © 2014 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2008-747 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 5471 
536 |a Detalles de la financiación: We thank Diana Bas (Instituto de Biología y Medicina Experimental, IByME-CONICET, Argentina) for her technical assistance. This study was supported by ANPCyT (PICT 2008-747 ), CONICET (PIP 5471 ) and Roemmers Foundation , Argentina. 
593 |a Instituto de Biología y Medicina Experimental (IByME), CONICET, Buenos Aires, Argentina 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ANGIOGENESIS 
690 1 0 |a APOPTOSIS 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a OHSS 
690 1 0 |a OVARY 
690 1 0 |a VEGF 
690 1 0 |a AFLIBERCEPT 
690 1 0 |a ANGIOGENESIS INHIBITOR 
690 1 0 |a CLAUDIN 5 
690 1 0 |a CLDN5 PROTEIN, RAT 
690 1 0 |a ESTRADIOL 
690 1 0 |a FLT1 PROTEIN, RAT 
690 1 0 |a HYBRID PROTEIN 
690 1 0 |a OCCLUDIN 
690 1 0 |a OCLN PROTEIN, RAT 
690 1 0 |a PROGESTERONE 
690 1 0 |a VASCULAR ENDOTHELIAL GROWTH FACTOR A, RAT 
690 1 0 |a VASCULOTROPIN A 
690 1 0 |a VASCULOTROPIN RECEPTOR 
690 1 0 |a VASCULOTROPIN RECEPTOR 1 
690 1 0 |a VASCULOTROPIN RECEPTOR 2 
690 1 0 |a CLAUDIN 5 
690 1 0 |a ESTRADIOL 
690 1 0 |a OCCLUDIN 
690 1 0 |a PROGESTERONE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR 1 FC CHIMERA 
690 1 0 |a VASCULOTROPIN 
690 1 0 |a VASCULOTROPIN INHIBITOR 
690 1 0 |a VASCULOTROPIN RECEPTOR 1 
690 1 0 |a VASCULOTROPIN RECEPTOR 2 
690 1 0 |a ANIMAL 
690 1 0 |a ANTAGONISTS AND INHIBITORS 
690 1 0 |a APOPTOSIS 
690 1 0 |a BLOOD 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a ENDOTHELIUM CELL 
690 1 0 |a FEMALE 
690 1 0 |a METABOLISM 
690 1 0 |a OVARY 
690 1 0 |a OVARY HYPERSTIMULATION 
690 1 0 |a PATHOLOGY 
690 1 0 |a SPRAGUE DAWLEY RAT 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CORPUS LUTEUM 
690 1 0 |a ESTRADIOL BLOOD LEVEL 
690 1 0 |a NONHUMAN 
690 1 0 |a OVARY HYPERSTIMULATION 
690 1 0 |a PROGESTERONE BLOOD LEVEL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN PHOSPHORYLATION 
690 1 0 |a RAT 
690 1 0 |a STEROIDOGENESIS 
690 1 0 |a ANGIOGENESIS INHIBITORS 
690 1 0 |a ANIMALS 
690 1 0 |a APOPTOSIS 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CLAUDIN-5 
690 1 0 |a ENDOTHELIAL CELLS 
690 1 0 |a ESTRADIOL 
690 1 0 |a FEMALE 
690 1 0 |a OCCLUDIN 
690 1 0 |a OVARIAN HYPERSTIMULATION SYNDROME 
690 1 0 |a OVARY 
690 1 0 |a PROGESTERONE 
690 1 0 |a RATS, SPRAGUE-DAWLEY 
690 1 0 |a RECEPTORS, VASCULAR ENDOTHELIAL GROWTH FACTOR 
690 1 0 |a RECOMBINANT FUSION PROTEINS 
690 1 0 |a VASCULAR ENDOTHELIAL GROWTH FACTOR A 
690 1 0 |a VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-1 
690 1 0 |a VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-2 
700 1 |a Abramovich, D. 
700 1 |a Pascuali, N. 
700 1 |a Irusta, G. 
700 1 |a Meresman, G. 
700 1 |a Tesone, M. 
700 1 |a Parborell, F. 
773 0 |d Elsevier Ltd, 2014  |g v. 144  |h pp. 392-401  |k n. PART B  |p J. Steroid Biochem. Mol. Biol.  |x 09600760  |w (AR-BaUEN)CENRE-5799  |t Journal of Steroid Biochemistry and Molecular Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906856877&doi=10.1016%2fj.jsbmb.2014.08.013&partnerID=40&md5=6bde86673814442a6b61d370c3d572f2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jsbmb.2014.08.013  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09600760_v144_nPARTB_p392_Scotti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09600760_v144_nPARTB_p392_Scotti  |y Registro en la Biblioteca Digital 
961 |a paper_09600760_v144_nPARTB_p392_Scotti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75344