Developmental thermal plasticity among Drosophila melanogaster populations

Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fallis, L.C
Otros Autores: Fanara, J.J, Morgan, T.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13165caa a22011417a 4500
001 PAPER-14312
003 AR-BaUEN
005 20230518204448.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84894265734 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JEBIE 
100 1 |a Fallis, L.C. 
245 1 0 |a Developmental thermal plasticity among Drosophila melanogaster populations 
260 |c 2014 
270 1 0 |m Morgan, T.J.; Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, United States; email: tjmorgan@ksu.edu 
506 |2 openaire  |e Política editorial 
504 |a Austin, C.J., Moehring, A.J., Optimal temperature range of a plastic species, Drosophila simulans (2013) J. Anim. Ecol., 82, pp. 663-672 
504 |a Ayrinhac, A., Debat, V., Gibert, P., Kister, A.G., Legout, H., Moreteau, B., Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability (2004) Funct. Ecol., 18, pp. 700-706 
504 |a Bubliy, O.A., Kristensen, T.N., Kellermann, V., Loeschcke, V., Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster (2012) Funct. Ecol., 26, pp. 245-253 
504 |a Cheviron, Z.A., Whitehead, A., Brumfield, R.T., Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient (2008) Mol. Ecol., 17, pp. 4556-4569 
504 |a Clarke, A., The influence of climate chance of the distribution and evolution of organisms (1996) Animals and Temperature: Phenotypic and Evolutionary Adaptation, pp. 377-407. , (I.A. Johnston, A.F. Bennett, eds). Cambridge University Press, Cambridge 
504 |a Crispo, E., Chapman, L.J., Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish (2010) J. Evol. Biol., 23, pp. 2091-2103 
504 |a David, J.R., Capy, P., Genetic variation of Drosophila melanogaster natural populations (1988) Trends Genet., 4, pp. 106-111 
504 |a Deere, J.A., Sinclair, B.J., Marshall, D.J., Chown, S.L., Phenotypic plasticity of thermal tolerance in five oribatid mite species from sub-Antarctic Marion Island (2006) J. Insect Physiol., 52, pp. 693-700 
504 |a DeWitt, T.J., Sih, A., Wilson, D.S., Costs and limits of phenotypic plasticity (1998) Trends Ecol. Evol., 13, pp. 77-81 
504 |a Fallis, L.C., Fanara, J.J., Morgan, T.J., Genetic variation in heat-stress tolerance among South American Drosophila populations (2012) Genetica, 139, pp. 1331-1337 
504 |a Folguera, G., Ceballos, S., Spezzi, L., Fanara, J.J., Hasson, E., Clinal variation in development time and viability, and the response to thermal treatments in two species of Drosophila (2008) Biol. J. Linn. Soc., 95, pp. 233-245 
504 |a Ghalambor, C.K., McKay, J.K., Carroll, S.P., Reznick, D.N., Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments (2007) Funct. Ecol., 21, pp. 394-407 
504 |a Gibbs, A.G., Perkins, M.C., Markow, T.A., No place to hide: microclimates of sonoran desert (2003) Drosophila. J. Therm. Biol., 28, pp. 353-362 
504 |a Gibert, P., Huey, R.B., Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny (2001) Physiol. Biochem. Zool., 74, pp. 429-434 
504 |a Gibert, P., Moreteau, B., Pétavy, G., Karan, D., David, J.R., Chill-coma tolerance, a major climatic adaptation among Drosophila species (2001) Evolution, 55, pp. 1063-1068 
504 |a Grant, V., (1977) Organismic Evolution, , Freeman, San Francisco, CA 
504 |a Hoffmann, A.A., Parsons, P.A., (1991) Evolutionary Genetics of Environmental Stress, , Oxford University Press, Oxford 
504 |a Hoffmann, A.A., Parsons, P.A., (1997) Extreme Environmental Change and Evolution, , Cambridge University Press, Cambridge 
504 |a Hoffmann, A.A., Willi, Y., Detecting genetic responses to environmental change (2008) Nat. Rev. Genet., 9, pp. 421-432 
504 |a Hoffmann, A.A., Hallas, R.J., Dean, J.A., Schiffer, M., Low potential for climatic stress adaptation in a rainforest Drosophila species (2003) Science, 301, pp. 100-102 
504 |a Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) J. Therm. Biol, 28, pp. 175-216 
504 |a Hoffmann, A.A., Shirriffs, J., Scott, M., Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia (2005) Funct. Ecol., 19, pp. 222-227 
504 |a Ishihara, M., Adaptive phenotypic plasticity and its difference between univoltine and multivoltine populations in a bruchid beetle, Kytorhinus sharpianus (1999) Evolution, 53, pp. 1979-1986 
504 |a Karl, I., Sørensen, J.G., Loeschcke, V., Fischer, K., HSP70 expression in the copper butterfly Lycaena tityrus across altitudes and temperatures (2009) J. Evol. Biol., 22, pp. 172-178 
504 |a Lavagnino, N.J., Anholt, R.R., Fanara, J.J., Variation in genetic architecture of olfactory behaviour among wild-derived populations of Drosophila melanogaster (2008) J. Evol. Biol., 21, pp. 988-996 
504 |a Lee, J.R.E., Chen, C., Denlinger, D.L., A rapid cold-hardening process in insects (1987) Science, 283, pp. 1415-1417 
504 |a Levin, D.A., Local differentiation and the breeding structure of plant populations (1988) Plant Evolutionary Biology, pp. 305-329. , L.D. Gottlieb & S.K. Jain, eds). Chapman & Hall, New York, NY 
504 |a Levine, M.T., Eckert, M.L., Begun, D.J., Whole-genome expression plasticity across tropical and temperate Drosophila melanogaster populations from Eastern Australia (2011) Mol. Biol. Evol., 28, pp. 249-256 
504 |a Mitchell-Olds, T., Rutledge, J.J., Quantitative genetics in natural plant populations: a review of the theory (1986) Am. Nat., 127, pp. 379-402 
504 |a Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242 
504 |a Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Mol. Ecol., 13, pp. 3585-3594 
504 |a Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V., QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Mol. Ecol., 17, pp. 4570-4581 
504 |a Overgaard, J., Tomcala, A., Sørensen, J.G., Holmstrup, M., Krogh, P.H., Simek, P., Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster (2008) J. Insect Physiol., 54, pp. 619-629 
504 |a Pigliucci, M., Murren, C.J., Genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by? (2003) Evolution, 57, pp. 1455-1464 
504 |a Price, T.D., Qvarnstorm, A., Irwin, D.E., The role of phenotypic plasticity in driving genetic evolution (2003) Proc. R. Soc. Lond. B, 270, pp. 1433-1440 
504 |a Rashkovetsky, E., Iliadi, K., Michalak, P., Lupu, A., Nevo, E., Feder, M.E., Adaptive differentiation of thermotolerance in Drosophila along a microclimatic gradient (2006) Heredity, 96, pp. 353-359 
504 |a Reusch, T.B.H., Wood, T.E., Molecular ecology of global change (2007) Mol. Ecol., 16, pp. 3973-3992 
504 |a Robinson, B.W., Dukas, R., The influence of phenotypic modifications on evolution: the Baldwin effect and modern perspectives (1999) Oikos, 85, pp. 582-589 
504 |a (2009), 16, pp. 3973-3992. , SAS Institute. SAS/STAT 9.2 User's Guide, Release 9.2 Edition. SAS Institute, Cary, NC; Scheiner, S.M., Genetics and evolution of phenotypic plasticity (1993) Annu. Rev. Ecol. Syst., 24, pp. 35-68 
504 |a Schlichting, C.D., Smith, H., Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes (2002) Evol. Ecol., 16, pp. 189-211 
504 |a Sgro, C.M., Overgaard, J., Kristensen, T.N., Mitchell, K.A., Cockerell, F.E., Hoffmann, A.A., A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia (2010) J. Evol. Biol., 23, pp. 2484-2493 
504 |a Swindell, W.R., Huebner, M., Weber, A.P., Plastic and adaptive gene expression patterns associated with temperature stress in Arabidopsis thaliana (2007) Heredity, 99, pp. 143-150 
504 |a Trotta, V., Calboli, F.C., Ziosi, M., Guerra, D., Pezzoli, M.C., David, J.R., Thermal plasticity in Drosophila melanogaster: a comparison of geographic populations (2006) BMC Evol. Biol., 6, p. 67 
504 |a Trussell, G.C., Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail (2000) Evolution, 54, pp. 151-166 
504 |a Umina, P.A., Weeks, A.R., Kearney, M.R., McKechnie, S.W., Hoffmann, A.A., A rapid shift in a classic clinal pattern in Drosophila reflecting climate change (2005) Science, 308, pp. 691-693 
504 |a Winterhalter, W.E., Mousseau, T.A., Patterns of phenotypic and genetic variation for the plasticity of diapause incidence (2007) Evolution, 61, pp. 1520-1531 
504 |a Zhen, Y., Ungerer, M.C., Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana (2008) New Phytol., 177, pp. 419-427 
520 3 |a Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill-coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations. © 2014 European Society For Evolutionary Biology.  |l eng 
593 |a Division of Biology, Ecological Genomics Institute, Kansas State University, Manhattan, KS, United States 
593 |a Departamento de Ecologia, Genetica y Evolucion-IEGEBA (CONICET-UBA), FCEN, UBA, Buenos Aires, Argentina 
690 1 0 |a CHILL-COMA RECOVERY 
690 1 0 |a COLD ACCLIMATION 
690 1 0 |a PHENOTYPIC PLASTICITY 
690 1 0 |a TEMPERATURE STRESS RESISTANCE 
690 1 0 |a THERMOTOLERANCE 
690 1 0 |a ANIMAL 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a FEMALE 
690 1 0 |a GENETIC VARIATION 
690 1 0 |a GENETICS 
690 1 0 |a GENOTYPE 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a TEMPERATURE 
690 1 0 |a ANIMALS 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a FEMALE 
690 1 0 |a GENETIC VARIATION 
690 1 0 |a GENOTYPE 
690 1 0 |a TEMPERATURE 
651 4 |a SOUTH AMERICA 
651 4 |a SOUTH AMERICA 
700 1 |a Fanara, J.J. 
700 1 |a Morgan, T.J. 
773 0 |d 2014  |g v. 27  |h pp. 557-564  |k n. 3  |p J. Evol. Biol.  |x 1010061X  |w (AR-BaUEN)CENRE-5565  |t Journal of Evolutionary Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894265734&doi=10.1111%2fjeb.12321&partnerID=40&md5=a4e3f3742f98733f3b3e6765389d2f70  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/jeb.12321  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1010061X_v27_n3_p557_Fallis  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1010061X_v27_n3_p557_Fallis  |y Registro en la Biblioteca Digital 
961 |a paper_1010061X_v27_n3_p557_Fallis  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI