Preferential concentration of heavy particles in turbulence

Particle-laden flows are of relevant interest in many industrial and natural systems. When the carrier flow is turbulent, a striking feature is the phenomenon called preferential concentration: particles denser than the fluid have the tendency to inhomogeneously distribute in space, forming clusters...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Obligado, Martín
Otros Autores: Teitelbaum, T., Cartellier, A., Mininni, P., Bourgoin, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Ltd. 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08561caa a22008777a 4500
001 PAPER-14243
003 AR-BaUEN
005 20250806125145.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84898648072 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Obligado, Martín 
245 1 0 |a Preferential concentration of heavy particles in turbulence 
260 |b Taylor and Francis Ltd.  |c 2014 
270 1 0 |m Bourgoin, M.; Laboratoire des ́ Ecoulements Ǵeophysiques et Industriels, CNRS, Universit́e de Grenoble, Grenoble Cedex 09, France; email: mickael.bourgoin@legi.cnrs.fr 
504 |a Squires, K.D., Eaton, J.K., Preferential concentration of particles by turbulence (1991) Phys. Fluids A, 3, pp. 1169-1178 
504 |a Fessler, J.R., Kulick, J.D., Eaton, J.K., Preferential concentration of heavy particles in a turbulent channel flow (1994) Physics of Fluids, 6 (11), pp. 3742-3749. , DOI 10.1063/1.868445 
504 |a Salazar, J.P.L.C., De Jong, J., Cao, L., Woodward, S.H., Meng, H., Collins, L.R., Experimental and numerical investigation of inertial particle clustering in isotropic turbulence (2008) Journal of Fluid Mechanics, 600, pp. 245-256. , DOI 10.1017/S0022112008000372, PII S0022112008000372 
504 |a Aliseda, A., Cartellier, A., Hainaux, F., Lasheras, J.C., Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence (2002) J. Fluid Mech., 468, pp. 77-105 
504 |a Goto, S., Vassilicos, J.C., Sweep-stick mechanism of heavy particle clustering in fluid turbulence (2008) Phys. Rev. Lett., 100, pp. 0545031-0545034 
504 |a Maxey, M.R., Riley, J.J., Equation of motion for a small rigid sphere in a nonuniform flow (1983) Phys. Fluids, 26, pp. 883-889 
504 |a Gatignol, R., Faxen formulae for a rigid particle in an unsteady non-uniform stokes flow (1983) Journal de mecanique theorique et appliquee, 2 (2), pp. 143-160 
504 |a Coleman, S.W., Vassilicos, J.C., A unified sweep-stick mechanism to explain particle clustering in two-and three-dimensional homogeneous, isotropic turbulence (2009) Phys. Fluids, 21, pp. 1133011-11330110 
504 |a Poelma, C., Westerweel, J., Ooms, G., Particle-fluid interactions in grid-generated turbulence (2007) Journal of Fluid Mechanics, 589, pp. 315-351. , DOI 10.1017/S0022112007007793, PII S0022112007007793 
504 |a Aurenhammer, F., Voronoi diagrams-a survey of a fundamental geometric data structure (1991) ACM Comput. Surv., 23, pp. 345-405 
504 |a Makita, H., Realization of a large-scale turbulence field in a small wind tunnel (1991) Fluid Dyn. Res., 8, pp. 53-64 
504 |a Mydlarski, L., Warhaft, Z., On the onset of high-Reynolds-number grid-generated wind tunnel turbulence (1996) J. Fluid Mech., 320, pp. 331-368 
504 |a Poorte, R., Biesheuvel, A., Experiments on the motion of gas bubbles in turbulence generated by an active grid (2002) J. Fluid Mech., 461, pp. 127-154 
504 |a Obligado, M., Missaoui, M., Monchaux, R., Cartellier, A., Bourgoin, M., Reynolds number influence on preferential concentration of heavy particles in turbulent flows (2011) J. Phys.Conf. Ser., 318, pp. 0520151-0520158 
504 |a Monchaux, R., Bourgoin, M., Cartellier, A., Preferential concentration of heavy particles: A Voronoi analysis (2010) Phys. Fluids, 22, pp. 1033041-10330410 
504 |a Monchaux, R., Bourgoin, M., Cartellier, A., Analyzing preferential concentration and clustering of inertial particles in turbulence (2012) Int. J. Multiphase Flow, 40, pp. 1-18 
504 |a Tagawa, Y., Mercado, J.M., Prakash, V.N., Calzavarini, E., Sun, C., Lohse, D., Threedimensional Lagrangian Voronö? Analysis for clustering of particles and bubbles in turbulence (2012) J. Fluid Mech., 693, pp. 201-215 
504 |a Mininni, P.D., Rosenberg, D., Reddy, R., Pouquet, A., A hybrid MPIOpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence (2011) Parallel Comput., 37, pp. 316-326 
504 |a Goto, S., Vassilicos, J.C., Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence (2006) Phys. Fluids, 18, pp. 1151031-11510310 
504 |a Gibert, M., Xu, H., Bodenschatz, E., Where do small, weakly inertial particles go in a turbulent flow? (2012) J. Fluid Mech., 698, pp. 160-167 
506 |2 openaire  |e Política editorial 
520 3 |a Particle-laden flows are of relevant interest in many industrial and natural systems. When the carrier flow is turbulent, a striking feature is the phenomenon called preferential concentration: particles denser than the fluid have the tendency to inhomogeneously distribute in space, forming clusters and depleted regions. We present an investigation of clustering of small water droplets in homogeneous and isotropic active-grid-generated turbulence. We investigate the effect of Reynolds number (R&lamda;) and Stokes number (St) on particles clustering in the range R&lamda; ∼ 200-400 and St ∼ 2-10. Using Voronoï diagrams, we characterise clustering level and cluster properties (geometry, typical dimension and fractality). The exact same Voronoï analysis is then applied to investigate clustering properties of specific topological points of the velocity field of homogeneous isotropic turbulence obtained from direct numerical simulations at R ∼ 220 and 300. The goal is to compare clustering properties of actual particles with those of such points in order to explore the relevance of possible clustering mechanisms, including centrifugal effects (heavy particles sampling preferentially low-vorticity regions) and sweep-stick mechanisms (heavy particles preferentially sticking to low-acceleration points). Our study points towards a leading role of zero-acceleration points and sweep-stick effects, at least for the experimental conditions considered in this study. © 2014 Taylor and Francis.  |l eng 
536 |a Detalles de la financiación: Agence Nationale de la Recherche, ANR-12-BS09-011-03 
536 |a Detalles de la financiación: European Cooperation in Science and Technology, A08U02, MP0806 
536 |a Detalles de la financiación: This work was supported by the French Agence Nationale pour la Recherche (project ANR-12-BS09-011-03), the COST action on ‘Particles in turbulence’ (project MP0806) and the French-Argentinian ECOS-Sud program (project A08U02). 
593 |a Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, London, United Kingdom 
593 |a Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Laboratoire des ́ Ecoulements Ǵeophysiques et Industriels, CNRS, Universit́e de Grenoble, Grenoble Cedex 09, France 
690 1 0 |a TURBULENT MIXING 
690 1 0 |a TURBULENT MULTI-PHASE FLOWS 
690 1 0 |a REYNOLDS NUMBER 
690 1 0 |a VELOCITY 
690 1 0 |a CLUSTERING MECHANISM 
690 1 0 |a CLUSTERING PROPERTIES 
690 1 0 |a EXPERIMENTAL CONDITIONS 
690 1 0 |a HOMOGENEOUS AND ISOTROPIC 
690 1 0 |a HOMOGENEOUS ISOTROPIC TURBULENCE 
690 1 0 |a PARTICLE LADEN FLOWS 
690 1 0 |a PREFERENTIAL CONCENTRATION 
690 1 0 |a TURBULENT MIXING 
690 1 0 |a TURBULENCE 
690 1 0 |a ACCELERATION 
690 1 0 |a CLUSTER ANALYSIS 
690 1 0 |a CONCENTRATION (COMPOSITION) 
690 1 0 |a FLOW MODELING 
690 1 0 |a REYNOLDS NUMBER 
690 1 0 |a STOKES FORMULA 
690 1 0 |a TURBULENCE 
690 1 0 |a TURBULENT MIXING 
700 1 |a Teitelbaum, T. 
700 1 |a Cartellier, A. 
700 1 |a Mininni, P. 
700 1 |a Bourgoin, M. 
773 0 |d Taylor and Francis Ltd., 2014  |g v. 15  |h pp. 293-310  |k n. 5  |p J. Turbul.  |x 14685248  |t Journal of Turbulence 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898648072&doi=10.1080%2f14685248.2014.897710&partnerID=40&md5=b1945a05ee46abb53954d234c0c5b7c9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/14685248.2014.897710  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14685248_v15_n5_p293_Obligado  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14685248_v15_n5_p293_Obligado  |y Registro en la Biblioteca Digital 
961 |a paper_14685248_v15_n5_p293_Obligado  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75196