Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)-Cr(III) passive outer layer structure

Nanoscale zerovalent iron (nZVI) particles were successfully employed for Cr(VI) removal from aqueous solutions at pH 3. It was found that the capacity of the system increases with increasing nZVI dosage. Starting at 300. μM, a complete Cr(VI) conversion was achieved in 30. min with a Fe:Cr(VI) mola...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Nahuel Montesinos, V.
Otros Autores: Quici, N., Beatriz Halac, E., Leyva, Ana Gabriela, Custo, G., Bengio, Silvina, Zampieri, G., Litter, M.I
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13279caa a22010337a 4500
001 PAPER-14232
003 AR-BaUEN
005 20250609093112.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84894330798 
030 |a CMEJA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Nahuel Montesinos, V. 
245 1 0 |a Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)-Cr(III) passive outer layer structure 
260 |c 2014 
270 1 0 |m Litter, M.I.; Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina; email: litter@cnea.gov.ar 
504 |a Saha, B., Orvig, C., Biosorbents for hexavalent chromium elimination from industrial and municipal effluents (2010) Coordin. Chem. Rev., 254, pp. 2959-2972 
504 |a (2011), WHO, Guidelines for drinking-water quality, fourth ed., World Health Organization, Geneva; Baral, A., Engelken, R.D., Chromium-based regulations and greening in metal finishing industries in the USA (2002) Environ. Sci. Policy, 5, pp. 121-133 
504 |a Blowes, D.W., Ptacek, C.J., Jambor, J.L., In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies (1997) Environ. Sci. Technol., 31, pp. 3348-3357 
504 |a Rangsivek, R., Jekel, M.R., Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment (2005) Water Res., 39, pp. 4153-4163 
504 |a Gheju, M., Iovi, A., Kinetics of hexavalent chromium reduction by scrap iron (2006) J. Hazard. Mater., 135, pp. 66-73 
504 |a Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., Sengupta, B., Remediation technologies for heavy metal contaminated groundwater (2011) J. Environ. Manage., 92, pp. 2355-2388 
504 |a Mamindy-Pajany, Y., Hurel, C., Geret, F., Roméo, M., Marmier, N., Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: a pilot-scale experiment (2013) J. Hazard. Mater., pp. 213-219 
504 |a Gheju, M., Balcu, I., Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations (2011) J. Hazard. Mater., 196, pp. 131-138 
504 |a Zhang, W.X., Nanoscale iron particles for environmental remediation: an overview (2003) J. Nanopart. Res., 5, pp. 323-332 
504 |a Li, X.-Q., Zhang, W.-X., Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS) (2007) J. Phys. Chem. C, 111, pp. 6939-6946 
504 |a Pradeep, T., Anshup, S., Noble metal nanoparticles for water purification: a critical review (2009) Thin Solid Films, 517, pp. 6441-6478 
504 |a Morgada, M.E., Levy, I.K., Salomone, V., Farías, S.S., López, G., Litter, M.I., Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids (2009) Catal. Today, 143, pp. 261-268 
504 |a Yan, W., Herzing, A.A., Kiely, C.J., Zhang, W.-X., Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water (2010) J. Contam. Hydrol., 118, pp. 96-104 
504 |a Crane, R.A., Scott, T.B., Nanoscale zero-valent iron: future prospects for an emerging water treatment technology (2012) J. Hazard. Mater., pp. 112-125 
504 |a Wu, Y., Zhang, J., Tong, Y., Xu, X., Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles (2009) J. Hazard. Mater., 172, pp. 1640-1645 
504 |a Scott, T.B., Popescu, I.C., Crane, R.A., Noubactep, C., Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants (2011) J. Hazard. Mater., 186, pp. 280-287 
504 |a Powell, R.M., Puls, R.W., Hightower, S.K., Sabatini, D.A., Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation (1995) Environ. Sci. Technol., 29, pp. 1913-1922 
504 |a Puls, R.W., Blowes, D.W., Gillham, R.W., Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina (1999) J. Hazard. Mater., 68, pp. 109-124 
504 |a Lee, T., Lim, H., Lee, Y., Park, J.W., Use of waste iron metal for removal of Cr(VI) from water (2003) Chemosphere, 53, pp. 479-485 
504 |a Cao, J., Zhang, W.X., Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles (2006) J. Hazard. Mater., 132, pp. 213-219 
504 |a Gheju, M., Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems (2011) Water Air Soil Pollut., 222, pp. 103-148 
504 |a Manning, B.A., Kiser, J.R., Kwon, H., Kanel, S.R., Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron (2006) Environ. Sci. Technol., 41, pp. 586-592 
504 |a Li, X.-Q., Cao, J., Zhang, W.-X., Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS) (2008) Ind. Eng. Chem. Res., 47, pp. 2131-2139 
504 |a Ai, Z., Cheng, Y., Zhang, L., Qiu, J., Efficient removal of Cr(VI) from aqueous solution with Fe at Fe2O3 core-shell nanowires (2008) Environ. Sci. Technol., 42, pp. 6955-6960 
504 |a Wang, Q., Cissoko, N., Zhou, M., Xu, X., Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe0) nanoparticles (2011) Phys. Chem. Earth, 36, pp. 442-446 
504 |a Alidokht, L., Khataee, A.R., Reyhanitabar, A., Oustan, S., Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution (2011) Desalination, 270, pp. 105-110 
504 |a Kim, J.-H., Kim, J.-H., Bokare, V., Kim, E.-J., Chang, Y.-Y., Chang, Y.-S., Enhanced removal of chromate from aqueous solution by sequential adsorption-reduction on mesoporous iron-iron oxide nanocomposites (2012) J. Nanopart. Res., 14, pp. 1-12 
504 |a Lv, X., Hu, Y., Tang, J., Sheng, T., Jiang, G., Xu, X., Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites (2013) Chem. Eng. J., 218, pp. 55-64 
504 |a Noubactep, C., A critical review on the process of contaminant removal in Fe0-H2O systems (2008) Environ. Technol., 29, pp. 909-920 
504 |a Balko, B.A., Tratnyek, P.G., Photoeffects on the reduction of carbon tetrachloride by zero-valent iron (1998) J. Phys. Chem. B, 102, pp. 1459-1465 
504 |a Scherer, M.M., Balko, B.A., Tratnyek, P.G., The role of oxides in reduction reactions at the metal-water interface (1998) ACS Symposium Series, pp. 301-322 
504 |a Noubactep, C., Schöner, A., Woafo, P., Metallic iron filters for universal access to safe drinking water (2009) Clean - Soil Air Water, 37, pp. 930-937 
504 |a (1999) ASTM, , Standards D 1687-92 
504 |a Sandell, E.B., (1959) Colorimetric Determination of Trace Metals, pp. 537-542. , Interscience Publishers Inc., New York 
504 |a Custo, G., Litter, M.I., Rodríguez, D., Vázquez, C., Total reflection X-ray fluorescence trace mercury determination by trapping complexation: application in advanced oxidation technologies (2006) Spectrochim. Acta Part B: Atom. Spectrosc., 61, pp. 1119-1123 
504 |a Fang, Z., Qiu, X., Huang, R., Qiu, X., Li, M., Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization (2011) Desalination, 280, pp. 224-231 
504 |a Lv, X., Xu, J., Jiang, G., Tang, J., Xu, X., Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions (2012) J. Colloid Interface Sci., 369, pp. 460-469 
504 |a dos Santos Coelho, F., Ardisson, J.D., Moura, F.C.C., Lago, R.M., Murad, E., Fabris, J.D., Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants (2008) Chemosphere, 71, pp. 90-96 
504 |a White, A.F., Peterson, M.L., Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides (1996) Geochimi. Cosmochim. Acta, 60, pp. 3799-3814 
504 |a Melitas, N., Chuffe-Moscoso, O., Farrell, J., Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects (2001) Environ. Sci. Technol., 35, pp. 3948-3953 
504 |a Cornell, R.M., Schwertmann, U., Products of Iron Metal Corrosion (2004) The Iron Oxides, pp. 491-508. , Wiley-VCH Verlag GmbH & Co. KGaA, Darmstadt 
504 |a Moulder, J., Stickle, W., Sobol, P., Bomben, K., (1992) Handbook of X-ray Photoelectron Spectroscopy, , Eden Prairie, Minnesotta 
506 |2 openaire  |e Política editorial 
520 3 |a Nanoscale zerovalent iron (nZVI) particles were successfully employed for Cr(VI) removal from aqueous solutions at pH 3. It was found that the capacity of the system increases with increasing nZVI dosage. Starting at 300. μM, a complete Cr(VI) conversion was achieved in 30. min with a Fe:Cr(VI) molar ratio (MR) of 3, and 45% conversion with MR= 1 over the same period of time. The material exhibited an enhanced reactivity in comparison with other previously tested similar materials. The proposed mechanism involves an initial reduction of Cr(VI) to Cr(III) by reaction with Fe0 or Fe(II) on the particle surface or in solution (secondary pathway), followed by an arrest on Cr(VI) removal attributed to the passivation of the surface of the nanoparticles. Passivation was confirmed by Raman and X-ray photoelectron spectroscopies (XPS). Furthermore, XPS analysis demonstrated that Cr(III) is the only Cr species present in the external layer of the nanoparticles after the reaction. Raman analysis and XPS measurements performed after mild sputtering showed that nZVI exposed to Cr(VI) presented a structure, from outside to inside, of hydroxychromites→magnetite→Fe0. © 2014 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT projects 512-2006, 0463-2011 
536 |a Detalles de la financiación: This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina) PICT projects 512-2006 and 0463-2011. A special mention to Eng. Jan Slunský from NANO IRON, s.r.o. Contributions by Martha Ortiz to the TXRF measurements and Adriana Domínguez for SEM images are gratefully acknowledged. Appendix A 
593 |a Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, FCEN, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina 
593 |a Escuela de Ciencia y Tecnología, Universidad de Gral. San Martín, Campus Miguelete, Martin de Irigoyen 3100, 1650 San Martin, Prov. de Buenos Aires, Argentina 
593 |a Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche, Prov. de Río Negro, Argentina 
593 |a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Prov. de Río Negro, Argentina 
593 |a Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de Gral. San Martín, Peatonal Belgrano 3563, 1 piso, 1650 San Martín, Prov. de Buenos Aires, Argentina 
690 1 0 |a HEXAVALENT CHROMIUM 
690 1 0 |a NANOSCALE ZEROVALENT IRON 
690 1 0 |a RAMAN SPECTROSCOPY 
690 1 0 |a XPS ANALYSIS 
700 1 |a Quici, N. 
700 1 |a Beatriz Halac, E. 
700 1 |a Leyva, Ana Gabriela 
700 1 |a Custo, G. 
700 1 |a Bengio, Silvina 
700 1 |a Zampieri, G. 
700 1 |a Litter, M.I. 
773 0 |d 2014  |g v. 244  |h pp. 569-575  |p Chem. Eng. J.  |x 13858947  |w (AR-BaUEN)CENRE-4151  |t Chemical Engineering Journal 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894330798&doi=10.1016%2fj.cej.2014.01.093&partnerID=40&md5=3220aa470ccc889f30950b3de0d43768  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.cej.2014.01.093  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13858947_v244_n_p569_NahuelMontesinos  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13858947_v244_n_p569_NahuelMontesinos  |y Registro en la Biblioteca Digital 
961 |a paper_13858947_v244_n_p569_NahuelMontesinos  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75185