Generalized phase transitions in Lovelock gravity

We investigate a novel mechanism for phase transitions that is a distinctive feature of higher-curvature gravity theories. For definiteness, we bound ourselves to the case of Lovelock gravities. These theories are known to have several branches of asymptotically anti-de Sitter solutions. Here, exten...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Camanho, X.O
Otros Autores: Edelstein, J.D, Giribet, G., Gomberoff, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Physical Society 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09353caa a22010217a 4500
001 PAPER-14099
003 AR-BaUEN
005 20230518204434.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84907459222 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PRVDA 
100 1 |a Camanho, X.O. 
245 1 0 |a Generalized phase transitions in Lovelock gravity 
260 |b American Physical Society  |c 2014 
270 1 0 |m Camanho, X.O.; Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutGermany 
506 |2 openaire  |e Política editorial 
504 |a Coleman, S.R., (1977) Phys. Rev. D, 15, p. 2929. , PRVDAQ 0556-2821 
504 |a Coleman, S.R., (1977) Phys. Rev. D, 16, p. 1248E. , PRVDAQ 0556-2821 
504 |a Linde, A., (1981) Phys. Lett., 100 B, p. 37. , PYLBAJ 0370-2693 
504 |a Klinkhamer, F., Manton, N., (1984) Phys. Rev. D, 30, p. 2212. , PRVDAQ 0556-2821 
504 |a Gomberoff, A., Henneaux, M., Teitelboim, C., Wilczek, F., (2004) Phys. Rev. D, 69, p. 083520. , PRVDAQ 0556-2821 
504 |a Coleman, S., De Luccia, F., (1980) Phys. Rev. D, 21, p. 3305. , PRVDAQ 0556-2821 
504 |a Brown, J., Teitelboim, C., (1987) Phys. Lett. B, 195, p. 177. , PYLBAJ 0370-2693 
504 |a Brown, J., Teitelboim, C., (1988) Nucl. Phys., B297, p. 787. , NUPBBO 0550-3213 
504 |a Weinberg, S., (1989) Rev. Mod. Phys., 61, p. 1. , RMPHAT 0034-6861 
504 |a Camanho, X.O., Edelstein, J.D., Giribet, G., Gomberoff, A., (2012) Phys. Rev. D, 86, p. 124048. , PRVDAQ 1550-7998 
504 |a Camanho, X.O., (2013) Springer Proc. Math. Stat., 60, p. 167. , 2194-1009 
504 |a Lanczos, C., (1938) Ann. Math., 39, p. 842. , ANMAAH 0003-486X 
504 |a Boulware, D.G., Deser, S., (1985) Phys. Rev. Lett., 55, p. 2656. , PRLTAO 0031-9007 
504 |a Lovelock, D., (1971) J. Math. Phys. (N.Y.), 12, p. 498. , JMAPAQ 0022-2488 
504 |a Garraffo, C., Giribet, G., (2008) Mod. Phys. Lett. A, 23, p. 1801. , MPLAEQ 0217-7323 
504 |a Camanho, X.O., Edelstein, J.D., (2013) Classical Quantum Gravity, 30, p. 035009. , CQGRDG 0264-9381 
504 |a Edelstein, J.D., (2013) Springer Proc. Math. Stat., 60, p. 19. , 2194-1009 
504 |a Camanho, X.O., Edelstein, J.D., De Santos, J.M.S., (2013) Gen. Relativ. Gravit., 46, p. 1637. , GRGVA8 0001-7701 
504 |a Myers, R., (1987) Phys. Rev. D, 36, p. 392. , PRVDAQ 0556-2821 
504 |a Eguchi, T., Gilkey, P.B., Hanson, A.J., (1980) Phys. Rep., 66, p. 213. , PRPLCM 0370-1573 
504 |a Gibbons, G.W., Hawking, S.W., (1977) Phys. Rev. D, 15, p. 2752. , PRVDAQ 0556-2821 
504 |a Camanho, X.O., Edelstein, J.D., Paulos, M.F., (2011) J. High Energy Phys., 5, p. 127. , JHEPFG 1029-8479 
504 |a Wheeler, J.T., (1986) Nucl. Phys., B268, p. 737. , NUPBBO 0550-3213 
504 |a Wheeler, J.T., (1986) Nucl. Phys., B273, p. 732. , NUPBBO 0550-3213 
504 |a Teitelboim, C., Zanelli, J., (1987) Classical Quantum Gravity, 4, p. L125. , CQGRDG 0264-9381 
504 |a Henneaux, M., Teitelboim, C., Zanelli, J., (1987) Phys. Rev. A, 36, p. 4417. , PLRAAN 0556-2791 
504 |a Chi, H.-H., He, H.-J., (2014) Nucl. Phys., B885, p. 448. , NUPBBO 0550-3213 
504 |a Shapere, A., Wilczek, F., (2012) Phys. Rev. Lett., 109, p. 160402. , PRLTAO 0031-9007 
504 |a Wilczek, F., (2012) Phys. Rev. Lett., 109, p. 160401. , PRLTAO 0031-9007 
504 |a Hawking, S.W., Page, D.N., (1983) Commun. Math. Phys., 87, p. 577. , CMPHAY 0010-3616 
504 |a Gravanis, E., Willison, S., (2007) Phys. Rev. D, 75, p. 084025. , PRVDAQ 1550-7998 
504 |a Garraffo, C., Giribet, G., Gravanis, E., Willison, S., (2008) J. Math. Phys. (N.Y.), 49, p. 042502. , JMAPAQ 0022-2488 
504 |a Israel, W., (1966) Nuovo Cimento B, 44, p. 1. , NCIBAW 0369-3554 
504 |a Israel, W., (1967) Nuovo Cimento B, 48, p. 463E. , NCIBAW 0369-3554 
504 |a Gravanis, E., Willison, S., (2004) J. Math. Phys. (N.Y.), 45, p. 4223. , JMAPAQ 0022-2488 
504 |a Gravanis, E., Willison, S., (2009) J. Math. Phys. (N.Y.), 50, p. 122505. , JMAPAQ 0022-2488 
504 |a Simons, J., Chern, S.-S., (1974) Ann. Math., 99, p. 48. , ANMAAH 0003-486X 
504 |a Mora, P., Olea, R., Troncoso, R., Zanelli, J., (2006) J. High Energy Phys., 2, p. 067. , JHEPFG 1029-8479 
504 |a Davis, S., (2003) Phys. Rev. D, 67, p. 024030. , PRVDAQ 0556-2821 
504 |a Camanho, X.O., Edelstein, J.D., (2013) J. High Energy Phys., 11, p. 151. , JHEPFG 1029-8479 
504 |a Camanho, X.O., (2013), Ph.D. thesis, University of Santiago de Compostela; Almheiri, A., Marolf, D., Polchinski, J., Sully, J., (2013) J. High Energy Phys., 2, p. 062. , JHEPFG 1029-8479 
504 |a Brigante, M., Liu, H., Myers, R.C., Shenker, S., Yaida, S., (2008) Phys. Rev. Lett., 100, p. 191601. , PRLTAO 0031-9007 
504 |a Buchel, A., Myers, R.C., (2009) J. High Energy Phys., 8, p. 016. , JHEPFG 1029-8479 
504 |a Hofman, D.M., (2009) Nucl. Phys., B823, p. 174. , NUPBBO 0550-3213 
504 |a De Boer, J., Kulaxizi, M., Parnachev, A., (2010) J. High Energy Phys., 3, p. 087. , JHEPFG 1029-8479 
504 |a Camanho, X.O., Edelstein, J.D., (2010) J. High Energy Phys., 4, p. 007. , JHEPFG 1029-8479 
504 |a De Boer, J., Kulaxizi, M., Parnachev, A., (2010) J. High Energy Phys., 6, p. 008. , JHEPFG 1029-8479 
504 |a Camanho, X.O., Edelstein, J.D., (2010) J. High Energy Phys., 6, p. 099. , JHEPFG 1029-8479 
504 |a Wald, R., (1993) Phys. Rev. D, 48, p. R3427. , PRVDAQ 0556-2821 
504 |a Hawking, S.W., Horowitz, G.T., Ross, S.F., (1995) Phys. Rev. D, 51, p. 4302. , PRVDAQ 0556-2821 
504 |a Buchel, A., Lehner, L., Myers, R.C., Van Niekerk, A., (2013) J. High Energy Phys., 5, p. 067. , JHEPFG 1029-8479 
504 |a Hofman, D.M., Maldacena, J., (2008) J. High Energy Phys., 5, p. 012. , JHEPFG 1029-8479 
520 3 |a We investigate a novel mechanism for phase transitions that is a distinctive feature of higher-curvature gravity theories. For definiteness, we bound ourselves to the case of Lovelock gravities. These theories are known to have several branches of asymptotically anti-de Sitter solutions. Here, extending our previous work, we show that phase transitions among some of these branches are driven by a thermalon configuration: a bubble separating two regions of different effective cosmological constants, generically hosting a black hole in the interior. Above some critical temperature, this thermalon configuration is preferred with respect to the finite-temperature anti-de Sitter space, triggering a sophisticated version of the Hawking-Page transition. After being created, the unstable bubble configuration can in general dynamically change the asymptotic cosmological constant. While this phenomenon already occurs in the case of a gravity action with square curvature terms, we point out that in the case of Lovelock theory with cubic (and higher) terms new effects appear. For instance, the theory may admit more than one type of bubble and branches that are in principle free of pathologies may also decay through the thermalon mechanism. We also find ranges of the gravitational couplings for which the theory becomes sick. These add up to previously found restrictions to impose tighter constraints on higher-curvature gravities. The results of this paper point to an intricate phase diagram which might accommodate similarly rich behavior in the dual conformal field theory side. © 2014 American Physical Society.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET 
593 |a Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Golm, 14476, Germany 
593 |a Department of Particle Physics and IGFAE, University of Santiago de Compostela, Santiago de Compostela, E-15782, Spain 
593 |a Centro de Estudios Científicos, CECS, Casilla 1469, Valdivia, Chile 
593 |a University of Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina 
593 |a Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso, Chile 
593 |a Departamento de Ciencias Físicas, Universidad Andres Bello, Avenida República 252, Santiago, Chile 
700 1 |a Edelstein, J.D. 
700 1 |a Giribet, G. 
700 1 |a Gomberoff, A. 
773 0 |d American Physical Society, 2014  |g v. 90  |k n. 6  |p Phys Rev D Part Fields Gravit Cosmol  |x 15507998  |t Physical Review D - Particles, Fields, Gravitation and Cosmology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907459222&doi=10.1103%2fPhysRevD.90.064028&partnerID=40&md5=8102d7131814370558574b1bd5dce0a6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevD.90.064028  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15507998_v90_n6_p_Camanho  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v90_n6_p_Camanho  |y Registro en la Biblioteca Digital 
961 |a paper_15507998_v90_n6_p_Camanho  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI