Tissue damage modeling in gene electrotransfer: The role of pH
Optimal gene electrotransfer (GET) requires a compromise between maximum transgene expression and minimal tissue damage. GET in skeletal muscle can be improved by pretreatment with hyaluronidase which contributes to maximize transgene uptake and expression. Nevertheless, tissue damage remains severe...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2014
|
| Materias: | |
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 12700caa a22014897a 4500 | ||
|---|---|---|---|
| 001 | PAPER-14036 | ||
| 003 | AR-BaUEN | ||
| 005 | 20251103081951.0 | ||
| 008 | 190411s2014 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84908412797 | |
| 024 | 7 | |2 cas |a hyaluronidase, 9001-54-1, 9055-18-9, 488712-31-8; hyaluronoglucosaminidase, 37326-33-3; Hyaluronoglucosaminidase | |
| 030 | |a BIOEF | ||
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Olaiz, N. | |
| 245 | 1 | 0 | |a Tissue damage modeling in gene electrotransfer: The role of pH |
| 260 | |b Elsevier |c 2014 | ||
| 270 | 1 | 0 | |m Marshall, G.; Laboratorio de Sistemas Complejos, Departamento de Computación, FCEyN, Universidad de Buenos AiresArgentina |
| 504 | |a Miklavčič, D., Network for development of electroporation-based technologies and treatments: COST TD1104 (2012) J. Membr. Biol., 245, pp. 591-598 | ||
| 504 | |a Orlowski, S., Mir, L., Cell electropermeabilization: a new tool for biochemical and pharmacological studies (1993) Biochim. Biophys. Acta Rev. Biomembr., 1154, pp. 51-63 | ||
| 504 | |a Mir, L., Bases and rationale of the electrochemotherapy (2006) Eur. J. Cancer Suppl., 4, pp. 38-44 | ||
| 504 | |a Weaver, J.C., Electroporation: a general phenomenon for manipulating cells and tissues (1993) J. Cell. Biochem., 51, pp. 426-435. , (PMID: 8496245) | ||
| 504 | |a Davalos, R., Mir, L., Rubinsky, B., Tissue ablation with irreversible electroporation (2005) Ann. Biomed. Eng., 33, pp. 223-231 | ||
| 504 | |a Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P., Gene transfer into mouse glioma cells by electroporation in high electric fields (1982) EMBO J., 1, pp. 841-845 | ||
| 504 | |a Wong, T.K., Neumann, E., Electric field mediated gene transfer (1982) Biochem. Biophys. Res. Commun., 107, pp. 584-587. , (PMID: 7126230) | ||
| 504 | |a Escoffre, J.-M., Portet, T., Wasungu, L., Teissié, J., Dean, D., Rols, M.-P., What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues (2008) Mol. Biotechnol., 41, pp. 286-295 | ||
| 504 | |a Pavlin, M., Flisar, K., Kanduier, M., The role of electrophoresis in gene electrotransfer (2010) J. Membr. Biol., 236, pp. 75-79 | ||
| 504 | |a Shirota, H., Petrenko, L., Hong, C., Klinman, D.M., Potential of transfected muscle cells to contribute to DNA vaccine immunogenicity (2007) J. Immunol., 179, pp. 329-336 | ||
| 504 | |a Chiarella, P., Massi, E., De Robertis, M., Sibilio, A., Parrella, P., Fazio, V.M., Signori, E., Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration (2008) Expert. Opin. Biol. Ther., 8, pp. 1645-1657. , (PMID: 18847301) | ||
| 504 | |a Chiarella, P., Fazio, V.M., Signori, E., Application of electroporation in DNA vaccination protocols (2010) Curr. Gene Ther., 10, pp. 281-286. , (PMID: 20504275) | ||
| 504 | |a McMahon, J.M., Signori, E., Wells, K.E., Fazio, V.M., Wells, D.J., Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase - increased expression with reduced muscle damage (2001) Gene Ther., 8, pp. 1264-1270. , (PMID: 11509960) | ||
| 504 | |a Chiarella, P., De Santis, S., Fazio, V.M., Signori, E., Hyaluronidase contributes to early inflammatory events induced by electrotransfer in mouse skeletal muscle (2013) Hum. Gene Ther., 24, pp. 406-416. , (PMID: 23360544) | ||
| 504 | |a Stern, R., Jedrzejas, M.J., Hyaluronidases: their genomics, structures, and mechanisms of action (2006) Chem. Rev., 106, pp. 818-839 | ||
| 504 | |a Olaiz, N., Maglietti, F., Suárez, C., Molina, F., Miklavcicc, D., Mir, L., Marshall, G., Electrochemical treatment of tumors using a one-probe two-electrode device (2010) Electrochim. Acta, 55, pp. 6010-6014 | ||
| 504 | |a Olaiz, N., Suárez, C., Risk, M., Molina, F., Marshall, G., Tracking protein electrodenaturation fronts in the electrochemical treatment of tumors (2010) Electrochem. Commun., 12, pp. 1388-2481 | ||
| 504 | |a Turjanski, P., Olaiz, N., Abou-Adal, P., Suárez, C., Risk, M., Marshall, G., Ph front tracking in the electrochemical treatment (EChT) of tumors: experiments and simulations (2009) Electrochim. Acta, 54, pp. 6199-6206 | ||
| 504 | |a Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Marshall, G., The role of ph fronts in reversible electroporation (2011) PLoS ONE, 6, p. e17303 | ||
| 504 | |a Maglietti, F., Michinski, S., Olaiz, N., Castro, M., Suárez, C., Marshall, G., The role of ph fronts in tissue electroporation based treatments (2013) PLoS ONE, 8, p. e80167 | ||
| 504 | |a Vry, J.D., Martínez-Martínez, P., Losen, M., Bode, G.H., Temel, Y., Steckler, T., Steinbusch, H.W., Prickaerts, J., Low current-driven micro-electroporation allows efficient in vivo delivery of nonviral DNA into the adult mouse brain (2010) Mol. Ther. J. Am. Soc. Gene Ther., , http://www.ncbi.nlm.nih.gov/pubmed/?term=Low+current-+driven+micro-electroporation+allows+e%0Ecient+in+vivo+delivery+of+nonviral+DNA+into+the+adult+mouse+brain%2C, (PMID: 20389292) | ||
| 504 | |a Bellard, E., Markelc, B., Pelofy, S., Le Guerroué, F., Sersa, G., Teissié, J., Cemazar, M., Golzio, M., Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization (2012) Off. J. Controlled Release Soc., 163, pp. 396-403. , (PMID: 23017380) | ||
| 504 | |a Markelc, B., Sersa, G., Cemazar, M., Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels (2013) PLoS ONE, 8, p. e59557 | ||
| 504 | |a Marshall, G., Solución Numérica de Ecuaciones Diferenciales (1986) Tomo II: Ecuaciones en Derivadas Parciales, , Editorial Reverté S.A., Buenos Aires | ||
| 504 | |a West, J., (1985) Physiological Basis of Medical Practice, , Lippincott, William & Wilkins, Baltimore | ||
| 504 | |a Sel, D., Cukjati, D., Batiuskaite, D., Slivnik, T., Mir, L.M., Miklavčič, D., Sequential finite element model of tissue electropermeabilization (2005) IEEE Trans. Biomed. Eng., 52, pp. 816-827 | ||
| 504 | |a Corović, S., Pavlin, M., Miklavčič, D., Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations (2007) Biomed. Eng. Online, 15, pp. 6-37 | ||
| 504 | |a Lee, R.C., Zhang, D., Hannig, J., Biophysical injury mechanisms in electrical shock trauma (2000) Annu. Rev. Biomed. Eng., 2, pp. 477-509 | ||
| 504 | |a Lee, R.C., Injury by electrical forces: pathophysiology, manifestations, and therapy (1997) Curr. Probl. Surg., 34, pp. 677-764 | ||
| 504 | |a Bhatt, D.L., Gaylor, D.C., Lee, R.C., Rhabdomyolysis due to pulsed electric fields (1990) Plast. Reconstr. Surg., 86, pp. 1-11. , (PMID: 2359775) | ||
| 504 | |a Garcia, P.A., Rossmeisl, J.H., Neal, R.E., Ellis, T.L., Davalos, R.V., A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure (2011) BioMed. Eng. OnLine, 10, p. 34 | ||
| 504 | |a Chiarella, P., Fazio, V.M., Signori, E., Electroporation in DNA vaccination protocols against cancer (2013) Curr. Drug Metab., 14, pp. 291-299. , (PMID: 23116110) | ||
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a Optimal gene electrotransfer (GET) requires a compromise between maximum transgene expression and minimal tissue damage. GET in skeletal muscle can be improved by pretreatment with hyaluronidase which contributes to maximize transgene uptake and expression. Nevertheless, tissue damage remains severe close to the electrodes, with a concomitant loss of GET efficiency. Here we analyze the role of pH in tissue damage in GET protocols through in vivo modeling using a transparent chamber implanted into the dorsal skinfold of a mouse (DSC) and intravital microscopy, and in silico modeling using the Poisson-Nernst-Planck equations for ion transport. DSC intravital microscopy reveals the existence of pH fronts emerging from both electrodes and that these fronts are immediate and substantial thus giving rise to tissue necrosis. Theoretical modeling confirms experimental measurements and shows that in GET protocols whether with or without hyaluronidase pretreatment, pH fronts are the principal cause of muscle damage near the electrodes. It also predicts that an optimal efficiency in GET protocols, that is a compromise between obtaining maximum electroporated area and minimal tissue damage, is achieved when the electric field applied is near 183. V/cm in a GET protocol and 158. V/cm in a hyaluronidase + GET protocol. © 2014 Elsevier B.V. |l eng | |
| 536 | |a Detalles de la financiación: TD1104 | ||
| 536 | |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT X132/08 | ||
| 536 | |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva, SLO-AR 08/02/09 | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 112-200801-01087/09 | ||
| 536 | |a Detalles de la financiación: E. Signori is grateful and thanks Prof DJ Wells. F. Maglietti and S. Michinski have scholarships from Consejo Nacional de Investigaciones Cientí ficas y Técnicas (CONICET) and Instituto Tecnológico Buenos Aires (ITBA), respectively. P. Turjanski, N. Olaiz, C. Suárez, A. Soba and G. Marshall are members from CONICET. This work was supported by grants from Universidad de Buenos Aires ( UBACyT X132/08 ), CONICET ( PIP 112-200801-01087/09 ), MINCyT ( SLO-AR 08/02/09 ), ITBACyT 2012 (modalidad I, Nro 1) and Biomedicine and Molecular Biosciences COST Action TD1104 . | ||
| 593 | |a Laboratorio de Sistemas Complejos, Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina | ||
| 593 | |a Laboratory of Molecular Pathology and Experimental Oncology, CNR-IFT, Rome, Italy | ||
| 593 | |a Instituto Tecnológico de Buenos Aires, Argentina | ||
| 650 | 1 | 7 | |2 spines |a PH |
| 650 | 1 | 7 | |2 spines |a PH |
| 650 | 1 | 7 | |2 spines |a PH |
| 650 | 1 | 7 | |2 spines |a PH |
| 690 | 1 | 0 | |a COMPUTATIONAL MODELING |
| 690 | 1 | 0 | |a GENE ELECTROTRANSFER |
| 690 | 1 | 0 | |a HYALURONIDASE |
| 690 | 1 | 0 | |a COMPUTATIONAL MODEL |
| 690 | 1 | 0 | |a ELECTROTRANSFER |
| 690 | 1 | 0 | |a HYALURONIDASE |
| 690 | 1 | 0 | |a TISSUE DAMAGE |
| 690 | 1 | 0 | |a HYALURONIDASE |
| 690 | 1 | 0 | |a HYALURONOGLUCOSAMINIDASE |
| 690 | 1 | 0 | |a ANIMAL EXPERIMENT |
| 690 | 1 | 0 | |a ANIMAL MODEL |
| 690 | 1 | 0 | |a ANIMAL TISSUE |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a COMPUTER MODEL |
| 690 | 1 | 0 | |a CONTROLLED STUDY |
| 690 | 1 | 0 | |a ELECTRIC CURRENT |
| 690 | 1 | 0 | |a ELECTRODE |
| 690 | 1 | 0 | |a ELECTROPORATION |
| 690 | 1 | 0 | |a FEMALE |
| 690 | 1 | 0 | |a GENE TARGETING |
| 690 | 1 | 0 | |a ION TRANSPORT |
| 690 | 1 | 0 | |a MATHEMATICAL MODEL |
| 690 | 1 | 0 | |a MICROSCOPY |
| 690 | 1 | 0 | |a MOUSE |
| 690 | 1 | 0 | |a MUSCLE INJURY |
| 690 | 1 | 0 | |a NONHUMAN |
| 690 | 1 | 0 | |a SKELETAL MUSCLE |
| 690 | 1 | 0 | |a SKINFOLD |
| 690 | 1 | 0 | |a TIBIALIS ANTERIOR MUSCLE |
| 690 | 1 | 0 | |a TISSUE INJURY |
| 690 | 1 | 0 | |a TISSUE NECROSIS |
| 690 | 1 | 0 | |a ADVERSE EFFECTS |
| 690 | 1 | 0 | |a ANIMAL |
| 690 | 1 | 0 | |a BIOLOGICAL MODEL |
| 690 | 1 | 0 | |a BOVINE |
| 690 | 1 | 0 | |a DRUG EFFECTS |
| 690 | 1 | 0 | |a GENE TRANSFER |
| 690 | 1 | 0 | |a MALE |
| 690 | 1 | 0 | |a METABOLISM |
| 690 | 1 | 0 | |a ANIMALS |
| 690 | 1 | 0 | |a CATTLE |
| 690 | 1 | 0 | |a ELECTROPORATION |
| 690 | 1 | 0 | |a GENE TRANSFER TECHNIQUES |
| 690 | 1 | 0 | |a HYALURONOGLUCOSAMINIDASE |
| 690 | 1 | 0 | |a HYDROGEN-ION CONCENTRATION |
| 690 | 1 | 0 | |a MALE |
| 690 | 1 | 0 | |a MICE |
| 690 | 1 | 0 | |a MODELS, BIOLOGICAL |
| 690 | 1 | 0 | |a MUSCLE, SKELETAL |
| 700 | 1 | |a Signori, E. | |
| 700 | 1 | |a Maglietti, F. | |
| 700 | 1 | |a Soba, Alejandro | |
| 700 | 1 | |a Suárez, C. | |
| 700 | 1 | |a Turjanski, P. | |
| 700 | 1 | |a Michinski, S. | |
| 700 | 1 | |a Marshall, Guillermo Ricardo | |
| 773 | 0 | |d Elsevier, 2014 |g v. 100 |h pp. 105-111 |p Bioelectrochemistry |x 15675394 |w (AR-BaUEN)CENRE-3947 |t Bioelectrochemistry | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908412797&doi=10.1016%2fj.bioelechem.2014.05.001&partnerID=40&md5=1535c386cd1179bd0cc3d75dcad7678b |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.bioelechem.2014.05.001 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_15675394_v100_n_p105_Olaiz |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v100_n_p105_Olaiz |y Registro en la Biblioteca Digital |
| 961 | |a paper_15675394_v100_n_p105_Olaiz |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 74989 | ||