Analysis of survival, gene expression and behavior following chill-coma in the medfly Ceratitis capitata: Effects of population heterogeneity and age

The medfly Ceratitis capitata is an agricultural pest distributed worldwide thanks, in part, to its phenotypic plasticity of thermal tolerance. Cold exposure has been shown to reduce C. capitata survival, which may affect its distribution in areas with subfreezing temperatures. When insects are incr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pujol-Lereis, L.M
Otros Autores: Rabossi, A., Quesada-Allué, L.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18252caa a22016697a 4500
001 PAPER-14023
003 AR-BaUEN
005 20230518204428.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84911451038 
024 7 |2 cas  |a Heat-Shock Proteins; HSP70 Heat-Shock Proteins; Insect Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JIPHA 
100 1 |a Pujol-Lereis, L.M. 
245 1 0 |a Analysis of survival, gene expression and behavior following chill-coma in the medfly Ceratitis capitata: Effects of population heterogeneity and age 
260 |b Elsevier Ltd  |c 2014 
270 1 0 |m Pujol-Lereis, L.M.; Franz-Josef-Strauß Allee 11Germany 
506 |2 openaire  |e Política editorial 
504 |a Baliraine, F.N., Bonizzoni, M., Guglielmino, C.R., Osir, E.O., Lux, S.A., Mulaa, F.J., Gomulski, L.M., Malacrida, A.R., Population genetics of the potentially invasive African fruit fly species, Ceratitis rosa and Ceratitis fasciventris (Diptera: Tephritidae) (2004) Mol. Ecol., 13, pp. 683-695 
504 |a Basso, A., Martinez, L., Manso, F., The significance of genetic polymorphisms within and between founder populations of Ceratitis capitata (Wied.) from Argentina (2009) PLoS ONE, 4, p. e4665 
504 |a Basson, C.H., Nyamukondiwa, C., Terblanche, J.S., Fitness costs of rapid cold-hardening in Ceratitis capitata (2012) Evolution, 66, pp. 296-304 
504 |a Boulétreau-merle, J., Fouillet, P., How to overwinter and be a founder: egg-retention phenotypes and mating status in Drosophila melanogaster (2002) Evol. Ecol., 16, pp. 309-332 
504 |a Bowler, K., Terblanche, J.S., Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? (2008) Biol. Rev. Camb. Philos. Soc., 83, pp. 339-355 
504 |a Carey, J.R., What demographers can learn from fruit fly actuarial models and biology (1997) Demography, 34, pp. 17-30 
504 |a Carey, J.R., Biodemography of the Mediterranean fruit fly: aging, longevity and adaptation in the wild (2011) Exp. Gerontol., 46, pp. 404-411 
504 |a Clark, M., Worland, M.R., How insects survive the cold: molecular mechanisms-a review (2008) J. Comp. Physiol. B., 178, pp. 917-933 
504 |a Colinet, H., Lee, S.F., Hoffmann, A., Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster (2010) FEBS J., 277, pp. 174-185 
504 |a Colinet, H., Siaussat, D., Bozzolan, F., Bowler, K., Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster (2013) J. Exp. Biol., 216, pp. 253-259 
504 |a Curtsinger, J.W., Khazaeli, A., A reconsideration of stress experiments and population heterogeneity (1997) Exp. Gerontol., 32, pp. 727-729 
504 |a David, J.R., Gibert, P., Pla, E., Petavy, G., Karan, D., Moreteau, B., Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster (1998) J. Therm. Biol, 23, pp. 291-299 
504 |a Denlinger, D.L., Lee, R.E., Physiology of cold sensitivity (1998) Temperature Sensitivity in Insects and Applications for Integrated Pest Management, pp. 55-96. , Westview Press, Boulder, CO, G.J. Hallman, D.L. Denlinger (Eds.) 
504 |a Denlinger, D.L., Yocum, G.D., Physiology of heat sensitivity (1998) Temperature Sensitivity in Insects and Applications for Integrated Pest Management, pp. 7-54. , Westview Press, Boulder, CO, G.J. Hallman, D.L. Denlinger (Eds.) 
504 |a Gargano, J.W., Martin, I., Bhandari, P., Grotewiel, M.S., Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila (2005) Exp. Gerontol., 40, pp. 386-395 
504 |a Hosler, J.S., Burns, J.E., Esch, H.E., Flight muscle resting potential and species-specific differences in chill-coma (2000) J. Insect Physiol., 46, pp. 621-627 
504 |a Israely, N., Ritte, U., Oman, S.D., Inability of Ceratitis capitata (Diptera: Tephritidae) to overwinter in the Judean hills (2004) J. Econ. Entomol., 97, pp. 33-42 
504 |a Jia, F.-X., Dou, W., Hu, F., Wang, J.-J., Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae) (2011) Florida Entomol., 94, pp. 956-963 
504 |a Khazaeli, A.A., Xiu, L., Curtsinger, J.W., Stress experiments as a means of investigating age-specific mortality in Drosophila melanogaster (1995) Exp. Gerontol., 30, pp. 177-184 
504 |a Kokolakis, G., Kritsidima, M., Tkachenko, T., Mintzas, A.C., Two hsp23 genes in the Mediterranean fruit fly, Ceratitis capitata: structural characterization, heat shock regulation and developmental expression (2009) Insect Mol. Biol., 18, pp. 171-181 
504 |a Kokolakis, G., Tatari, M., Zacharopoulou, A., Mintzas, A.C., The hsp27 gene of the Mediterranean fruit fly, Ceratitis capitata: structural characterization, regulation and developmental expression (2008) Insect Mol. Biol., 17, pp. 699-710 
504 |a Koštál, V., Yanagimoto, M., Bastl, J., Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea) (2006) Comp. Biochem. Physiol. B, 143, pp. 171-179 
504 |a Lalouette, L., Williams, C.M., Hervant, F., Sinclair, B.J., Renault, D., Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations (2011) Comp. Biochem. Physiol. A Mol. Integr. Physiol., 158, pp. 229-234 
504 |a Lee, R.E., Insect cold-hardiness: to freeze or not to freeze - how insects survive low temperatures (1989) Bioscience, 39, pp. 308-313 
504 |a Linderman, J.A., Chambers, M.C., Gupta, A.S., Schneider, D.S., Infection-related declines in chill coma recovery and negative geotaxis in Drosophila melanogaster (2012) PLoS ONE, 7, p. e41907 
504 |a Liquido, N.J., Cunningham, R.T., Shinoda, L.A., Host plants of the Mediterranean fruit fly (Diptera: Tephritidae): In: An Annotated World Review. (1991) Entomological Society of America, 77, pp. 1-52. , Miscellaneous Publications 
504 |a Macdonald, S.S., Rako, L., Batterham, P., Hoffmann, A.A., Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster (2004) J. Insect Physiol., 50, pp. 695-700 
504 |a Macmillan, H.A., Sinclair, B.J., Mechanisms underlying insect chill-coma (2011) J. Insect Physiol., 57, pp. 12-20 
504 |a MacMillan, H.A., Sinclair, B.J., The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus (2011) J. Exp. Biol., 214, pp. 726-734 
504 |a Malacrida, A.R., Gomulski, L.M., Bonizzoni, M., Bertin, S., Gasperi, G., Guglielmino, C.R., Globalization and fruitfly invasion and expansion: the medfly paradigm (2007) Genetica, 131, pp. 1-9 
504 |a Nyamukondiwa, C., Kleynhans, E., Terblanche, J.S., Phenotypic plasticity of thermal tolerance contributes to the invasion potential of Mediterranean fruit flies (Ceratitis capitata) (2010) Ecol. Entomol., 35, pp. 565-575 
504 |a Nyamukondiwa, C., Terblanche, J.S., Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): Effects of age, gender and feeding status (2009) J. Therm. Biol, 34, pp. 406-414 
504 |a Oroño, L.E., Ovruski, S.M., Norrbom, A.L., Schliserman, P., Colin, C., Martin, C.B., Two new native host plant records for Anastrepha fraterculus (Diptera: Tephritidae) in Argentina (2005) Florida Entomol., 88, pp. 228-232 
504 |a Overgaard, J., Sorensen, J.G., Petersen, S.O., Loeschcke, V., Holmstrup, M., Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster (2005) J. Insect Physiol., 51, pp. 1173-1182 
504 |a Ovruski, S.M., Schliserman, P., Biological control of tephritid fruit flies in Argentina: historical review, current status, and future trends for developing a parasitoid mass-release program (2012) Insects, 3, pp. 870-888 
504 |a Papadimitriou, E., Kritikou, D., Mavroidis, M., Zacharopoulou, A., Mintzas, A.C., The heat shock 70 gene family in the Mediterranean fruit fly Ceratitis capitata (1998) Insect Mol. Biol., 7, pp. 279-290 
504 |a Papadopoulos, N.T., Carey, J.R., Katsoyannos, B.I., Kouloussis, N.A., Overwintering of the Mediterranean Fruit Fly (Diptera: Tephritidae) in Northern Greece (1996) Ann. Entomol. Soc. Am., 89, pp. 526-534 
504 |a Model fitting and hypothesis testing for age-specific mortality data (1999) J. Evol. Biol., 12, pp. 430-439 
504 |a Pujol-Lereis, L.M., Rabossi, A., Quesada-Allue, L.A., Lipid profiles as indicators of functional senescence in the medfly (2012) Exp. Gerontol., 47, pp. 465-472 
504 |a Riemensperger, T., Issa, A.-R., Pech, U., Coulom, H., Nguyn, M.-V., Cassar, M., Jacquet, M., Birman, S., A single dopamine pathway underlies progressive locomotor deficits in a Drosophila model of Parkinson Disease (2013) Cell Rep., 5, pp. 952-960 
504 |a Roach, D.A., Gampe, J., Age-specific demography in Plantago: uncovering age-dependent mortality in a natural population (2004) Am. Nat., 164, pp. 60-69 
504 |a Rojas, R.R., Leopold, R.A., Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence (1996) Cryobiology, 33, pp. 447-458 
504 |a Romanyukha, A.A., Karkach, A.S., Carey, J.R., Yashin, A.I., Adaptive trade-off in C. capitata is a characteristic feature of the long-lived subpopulation (2010) MPIDR Working Paper, 49, pp. 1-8 
504 |a Sinclair, B.J., Gibbs, A.G., Roberts, S.P., Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster (2007) Insect Mol. Biol., 16, pp. 435-443 
504 |a Sørensen, J.G., Application of heat shock protein expression for detecting natural adaptation and exposure to stress in natural populations (2010) Curr. Zool., 56, pp. 703-713 
504 |a Theodoraki, M.A., Mintzas, A.C., CDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata (2006) Insect Mol. Biol., 15, pp. 839-852 
504 |a Tower, J., Heat shock proteins and Drosophila aging (2011) Exp. Gerontol., 46, pp. 355-362 
504 |a Udaka, H., Ueda, C., Goto, S.G., Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma (2010) J. Insect Physiol., 56, pp. 1889-1894 
504 |a Van Raamsdonk, J.M., Hekimi, S., Superoxide dismutase is dispensable for normal animal lifespan (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 5785-5790 
504 |a Vaupel, J.W., Biodemography of human ageing (2010) Nature, 464, pp. 536-542 
504 |a Vaupel, J.W., Manton, K.G., Stallard, E., The impact of heterogeneity in individual frailty on the dynamics of mortality (1979) Demography, 16, pp. 439-454 
504 |a Vesala, L., Salminen, T.S., Laiho, A., Hoikkala, A., Kankare, M., Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions (2012) Insect Mol. Biol., 21, pp. 107-118 
504 |a Weldon, C.W., Terblanche, J.S., Chown, S.L., Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species (2011) J. Therm. Biol, 36, pp. 479-485 
504 |a Wu, D., Rea, S.L., Yashin, A.I., Johnson, T.E., Visualizing hidden heterogeneity in isogenic populations of C. elegans (2006) Exp. Gerontol., 41, pp. 261-270 
504 |a Yang, J., Tower, J., Expression of hsp22 and hsp70 transgenes is partially predictive of drosophila survival under normal and stress conditions (2009) J. Gerontol. Ser. A Biol. Sci. Med. Sci., 64, pp. 828-838 
504 |a Yocum, G.D., Joplin, K.H., Denlinger, D.L., Expression of heat shock proteins in response to high and low temperature extremes in diapausing pharate larvae of the gypsy moth, Lymantria dispar (1991) Arch. Insect Biochem. Physiol., 18, pp. 239-249 
504 |a Zachariassen, K.E., Kristiansen, E., Pedersen, S.A., Inorganic ions in cold-hardiness (2004) Cryobiology, 48, pp. 126-133 
520 3 |a The medfly Ceratitis capitata is an agricultural pest distributed worldwide thanks, in part, to its phenotypic plasticity of thermal tolerance. Cold exposure has been shown to reduce C. capitata survival, which may affect its distribution in areas with subfreezing temperatures. When insects are increasingly cooled, they attain a critical thermal threshold and enter a chill-coma state characterized by cessation of movement. It is not clear how a rapid cold exposure affects the physiological state of medflies, and how this is influenced by age and population heterogeneity. In order to approach these questions, C. capitata single-sex laboratory populations of 15 and 30. days old were subjected to a chill-coma recovery assay, and separated according to their recovery time in three subgroups: Fast-Subgroups, Intermediate-Subgroups, and Slow-Subgroups. Thereafter, we analyzed their survival, behavioral, and gene expression outputs. In female and old male populations, we found that flies with the slowest recovery time had a reduced life expectancy, a higher initial mortality rate, and a worse climbing performance compared with flies that recovered faster. Therefore, we were able to separate subgroups that developed chilling-injury from subgroups that had a reversible full recovery after cold exposure. The gene expression analysis of the heat shock protein genes hsp70 and hsp83 showed no clear association with the parameters studied. Interestingly, thorax expression levels of the Cu/Zn superoxide dismutase gene were elevated during the recovery phase in the Fast-Subgroups, but remained constant in the Slow-Subgroups that developed chilling-injury. On the other hand, none of the young male subgroups seemed to have suffered irreversible damage. Thus, we concluded that depending on age and population heterogeneity, chill-coma recovery time points out significant differences on individual cold tolerance. Moreover, the inability to properly induce the antioxidant defense system to counteract the oxidative damage caused by cold seems to contribute to the development of chilling-injury. © 2014 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Alexander von Humboldt-Stiftung 
536 |a Detalles de la financiación: We would like to thank Eduardo Cafferata and Santiago Werbajh for helping with the semiquantitative RT-PCR assays. We thank Raul Alzogaray for his valuable comments and suggestions. We specially thank anonymous reviewers whose generous comments and very helpful indications allowed us to significantly improve our manuscript. This study was funded by CONICET and the University of Buenos Aires, Argentina. LMP-L was a Research Fellow of CONICET, and is currently a Postdoctoral Fellow of the Alexander von Humboldt Foundation. LAQ-A is a Full Professor at the Biological Chemistry Department, FCEyN, University of Buenos Aires. AR and LAQ-A belong to the Scientist Career of CONICET. 
593 |a Instituto de Investigaciones Bioquímicas de Buenos Aires development of chilling-injury, CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Fundación Instituto Leloir, Buenos Aires, Argentina 
593 |a Institute of Human Genetics, University of Regensburg, Regensburg, Germany 
690 1 0 |a CERATITIS CAPITATA 
690 1 0 |a CHILL-COMA RECOVERY 
690 1 0 |a CHILLING-INJURY 
690 1 0 |a POPULATION HETEROGENEITY 
690 1 0 |a SUPEROXIDE DISMUTASE 
690 1 0 |a SURVIVAL 
690 1 0 |a ADAPTATION 
690 1 0 |a AGE 
690 1 0 |a ANTIOXIDANT 
690 1 0 |a BIOASSAY 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FLY 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a HETEROGENEITY 
690 1 0 |a MORTALITY 
690 1 0 |a PEST SPECIES 
690 1 0 |a PHENOTYPIC PLASTICITY 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a POPULATION STRUCTURE 
690 1 0 |a SURVIVAL 
690 1 0 |a TEMPERATURE TOLERANCE 
690 1 0 |a CERATITIS CAPITATA 
690 1 0 |a HEAT SHOCK PROTEIN 
690 1 0 |a HEAT SHOCK PROTEIN 70 
690 1 0 |a INSECT PROTEIN 
690 1 0 |a ACCLIMATIZATION 
690 1 0 |a AGE 
690 1 0 |a ANIMAL 
690 1 0 |a COLD SHOCK RESPONSE 
690 1 0 |a FEMALE 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENETICS 
690 1 0 |a GROWTH, DEVELOPMENT AND AGING 
690 1 0 |a LONGEVITY 
690 1 0 |a MALE 
690 1 0 |a MEDITERRANEAN FRUIT FLY 
690 1 0 |a METABOLISM 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a SEX DIFFERENCE 
690 1 0 |a ACCLIMATIZATION 
690 1 0 |a AGE FACTORS 
690 1 0 |a ANIMALS 
690 1 0 |a CERATITIS CAPITATA 
690 1 0 |a COLD-SHOCK RESPONSE 
690 1 0 |a FEMALE 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a HEAT-SHOCK PROTEINS 
690 1 0 |a HSP70 HEAT-SHOCK PROTEINS 
690 1 0 |a INSECT PROTEINS 
690 1 0 |a LONGEVITY 
690 1 0 |a MALE 
690 1 0 |a SEX FACTORS 
700 1 |a Rabossi, A. 
700 1 |a Quesada-Allué, L.A. 
773 0 |d Elsevier Ltd, 2014  |g v. 71  |h pp. 156-163  |p J. Insect Physiol.  |x 00221910  |w (AR-BaUEN)CENRE-668  |t Journal of Insect Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84911451038&doi=10.1016%2fj.jinsphys.2014.10.015&partnerID=40&md5=c58e4ff2cd76997558d7f3c26173f8db  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jinsphys.2014.10.015  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00221910_v71_n_p156_PujolLereis  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v71_n_p156_PujolLereis  |y Registro en la Biblioteca Digital 
961 |a paper_00221910_v71_n_p156_PujolLereis  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI