N-β-alanyldopamine metabolism, locomotor activity and sleep in Drosophila melanogaster ebony and tan mutants

Drosophila melanogaster Meigen mutants for N-β-alanyldopamine (NBAD) metabolism have altered levels of NBAD, dopamine and other neurotransmitters. The ebony1 mutant strain has very low levels of NBAD and higher levels of dopamine, whereas the opposite situation is observed in the tan1 mutant. Dopami...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rossi, F.A
Otros Autores: Bochicchio, P.A, Quesada-Allué, L.A, Pérez, M.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12265caa a22010457a 4500
001 PAPER-13813
003 AR-BaUEN
005 20230518204414.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84929315510 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PENTD 
100 1 |a Rossi, F.A. 
245 1 0 |a N-β-alanyldopamine metabolism, locomotor activity and sleep in Drosophila melanogaster ebony and tan mutants 
260 |b Blackwell Publishing Ltd  |c 2015 
270 1 0 |m Pérez, M.M.; Fundación Instituto Leloir, Patricias Argentinas 435, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Andretic, R., Shaw, P.J., Essentials of sleep recordings in Drosophila: moving beyond sleep time (2005) Methods in Enzymology, 393, pp. 759-772 
504 |a Andretic, R., Van Swinderen, B., Greenspan, R.J., Dopaminergic modulation of arousal in Drosophila (2005) Current Biology, 15, pp. 1165-1175 
504 |a Andretic, R., Kim, Y.C., Jones, F.S., Drosophila D1 dopamine receptor mediates caffeine-induced arousal (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 20392-20397 
504 |a Benzer, S., Behavioral mutants of Drosophila isolated by countercurrent distribution (1967) Proceedings of the National Academy of Sciences of the United States of America, 58, pp. 1112-1119 
504 |a Borycz, J., Borycz, J.A., Loubani, M., tan and ebony genes regulate a novel pathway for transmitter metabolism at fly photoreceptor terminals (2002) Journal of Neuroscience, 22, pp. 10549-10557 
504 |a Chen, A., Ng, F., Lebestky, T., Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster (2013) Genetics, 193, pp. 159-176 
504 |a Claridge-Chang, A., Wijnen, F.N., Boothroyd, C., Circadian regulation of gene expression systems in the Drosophila head (2001) Neuron, 32, pp. 657-671 
504 |a Cook, R., The extent of visual control in the courtship tracking of Drosophila melanogaster (1980) Biological Cybernetics, 37, pp. 41-51 
504 |a Crocker, A., Sehgal, A., Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms (2008) Journal of Neuroscience, 28, pp. 9377-9385 
504 |a Gruntenko, N., Chentsova, N.A., Bogomolova, E.V., The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to environmental stresses (2004) Archives of Insect Biochemistry and Physiology, 55, pp. 55-67 
504 |a Heisenberg, M., Behavioral diagnostics; a way to analyze visual mutants of Drosophila (1972) Information Processing in the Visual Systems of Anthropods, pp. 265-268. , ed. by R. Wehner, Springer-Verlag, Germany 
504 |a Helfrich-Förster, C., Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster-sex-specific differences suggest a different quality of activity (2000) Journal of Biological Rhythms, 15, pp. 135-154 
504 |a Hendricks, J.C., Finn, S.M., Panckeri, K.A., Rest in Drosophila is a sleep-like state (2000) Neuron, 25, pp. 129-138 
504 |a Ho, K.S., Sehgal, A., Drosophila melanogaster: an insect model for fundamental studies of sleep (2005) Methods in Enzymology, 393, pp. 772-793 
504 |a Hodgetts, R.B., Konopka, R.J., Tyrosine and catecholamine metabolism in wild type Drosophila melanogaster and a mutant, ebony (1973) Journal of Insect Physiology, 19, pp. 1211-1220 
504 |a Hopkins, T.L., Kramer, K.J., Insect cuticle sclerotization (1992) Annual Review of Entomology, 37, pp. 273-302 
504 |a Hotta, Y., Benzer, S., Abnormal electroretinograms in visual mutants of Drosophila (1969) Nature, 222, pp. 354-356 
504 |a Inoue, H., Yoshioka, T., Hotta, Y., Membrane-associated phospholipase C of Drosophila retina (1988) Journal of Biochemistry, 103, pp. 91-94 
504 |a Konopka, R.J., Abnormal concentrations of dopamine in a Drosophila mutant (1972) Nature, 239, pp. 281-282 
504 |a Kume, K., Kume, S., Park, S.K., Dopamine is a regulator of arousal in the fruit fly (2005) Journal of Neuroscience, 25, pp. 7377-7384 
504 |a Kyriacou, C.P., Burnet, B., Connolly, K., The behavioral basis of overdominance in competitive mating success at the ebony locus of Drosophila melanogaster (1978) Animal Behaviour, 26, pp. 1195-1206 
504 |a Mauchly, J.W., Significance test for sphericity of a normal n-variate distribution (1940) Annals of Mathematical Statistics, 11, pp. 204-220 
504 |a Newby, L.M., Jackson, F.R., Drosophila ebony mutants have altered circadian activity rhythms but normal eclosion rhythms (1991) Journal of Neurogenetics, 7, pp. 85-101 
504 |a Oh, Y., Jang, D., Sonn, J.Y., Histamine-HisCl1 receptor axis regulates wake-promoting signals in Drosophila melanogaster (2013) PLoS ONE, 8 
504 |a Pérez, M., Castillo-Marin, N., Quesada-Allué, L.A., β-alanyl-dopamine synthase in D. melanogaster and Ceratitis capitata melanic mutants (1997) Drosophila Information Service, 80, pp. 39-41 
504 |a Pérez, M.M., Wappner, P., Quesada-Allué, L.A., Catecholamine-β-alanyl ligase in the medfly Ceratitis capitata (2002) Insect Biochemistry and Molecular Biology, 32, pp. 617-625 
504 |a Pérez, M.M., Schachter, J., Quesada-Allue, L.A., Constitutive activity of N-beta-alanyl-catecholamine ligase in insect brain (2004) Neuroscience Letters, 368, pp. 186-191 
504 |a Pérez, M.M., Schachter, J., Berni, J., Quesada-Allué, L.A., The enzyme NBAD-synthase plays diverse roles during the life cycle of Drosophila melanogaster (2010) Journal of Insect Physiology, 56, pp. 8-13 
504 |a Pérez, M.M., Sabio, G., Badaracco, A., Constitutive expression and enzymatic activity of Tan protein in brain and epidermis of Ceratitis capitata and of Drosophila melanogaster wild-type and tan mutants (2011) Insect Biochemistry and Molecular Biology, 41, pp. 653-659 
504 |a Riemensperger, T., Isabel, G., Coulom, H., Behavioral consequences of dopamine deficiency in the Drosophila central nervous system (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 834-839 
504 |a Rosbash, M., The implications of multiple circadian clock origins (2009) PLoS Biology, 7, pp. 421-425 
504 |a Sandrelli, F., Costa, R., Kyriacou, C.P., Comparative analysis of circadian clock genes in insects (2008) Insect Molecular Biology, 17, pp. 447-463 
504 |a Schachter, J., Pérez, M.M., Quesada-Allué, L., The role of N-b-alanyldopamine synthase in the innate immune response of two insects (2007) Journal of Insect Physiology, 53, pp. 1188-1197 
504 |a Seugnet, L., Suzuki, Y., Vine, L., D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila (2008) Current Biology, 18, pp. 1110-1117 
504 |a Seugnet, L., Suzuki, Y., Thimgan, M., Identifying sleep regulatory genes using a Drosophila model of insomnia (2009) Journal of Neuroscience, 29, pp. 7148-7157 
504 |a Shaw, P.J., Cirelli, C., Greenspan, R.J., Correlates of sleep and waking in Drosophila melanogaster (2000) Science, 287, pp. 1834-1837 
504 |a Simon, A.F., Daniels, R., Romero-Calderón, R., Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin (2009) Genetics, 181, pp. 525-541 
504 |a Suh, J., Jackson, F.R., Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity (2007) Neuron, 55, pp. 435-447 
504 |a Tompkins, L., Gross, A.C., Hall, J.C., The role of female movement in the sexual behavior of Drosophila melanogaster (1982) Behavior Genetics, 12, pp. 295-307 
504 |a True, J.R., Yeh, S.-D., Hovemann, B.T., Drosophila tan encodes a novel hydrolase required in pigmentation and vision (2005) PLOS Genetics, 1, pp. 551-562 
504 |a Van Swinderen, B., Andretic, R., Dopamine in Drosophila: setting arousal thresholds in a miniature brain (2011) Proceedings of the Royal Society, 278, pp. 906-913 
504 |a Walter, M.F., Zeineh, L.L., Black, B., Catecholamine metabolism and in vitro induction of premature cuticle melanization in wild type and pigmentation mutants of Drosophila melanogaster (1996) Archives of Insect Biochemistry and Physiology, 31, pp. 219-233 
504 |a Wright, T.R.F., The genetics of biogenic amine metabolism, sclerotization and melanization in Drosophila melanogaster (1987) Advances in Genetics, 24, pp. 127-222 
504 |a Wu, M.N., Koh, K., Yue, Z., A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila (2008) Sleep, 31, pp. 465-472 
504 |a Yamasaki, N., Aso, Y., Tsukamoto, T., A convenient method for the preparation of N-β-alanyldopamine as substrate of phenol-oxidase (1990) Agricultural and Biological Chemistry, 54, pp. 833-836 
504 |a Yuan, Q., Joiner, W.J., Sehgal, A., A sleep-promoting role for the Drosophila serotonin receptor 1A (2006) Current Biology, 16, pp. 1051-1062 
520 3 |a Drosophila melanogaster Meigen mutants for N-β-alanyldopamine (NBAD) metabolism have altered levels of NBAD, dopamine and other neurotransmitters. The ebony1 mutant strain has very low levels of NBAD and higher levels of dopamine, whereas the opposite situation is observed in the tan1 mutant. Dopamine is implicated in the control of movement, memory and arousal, as well as in the regulation of sleep and wakefulness in D. melanogaster. N-β-alanyldopamine, which is best known as a cuticle cross-linking agent, is also present in nervous tissue and has been proposed to promote locomotor activity in this fly. The daily locomotor activity and the sleep patterns of ebony1 and tan1 mutants are analyzed, and are compared with wild-type flies. The tan1 mutant shows reduced locomotor activity, whereas ebony1 shows higher levels of activity than wild-type flies, suggesting that NBAD does not promote locomotor activity. Both mutants spend less time asleep than wild-type flies during night-time; ebony shows more consolidated activity during night-time and increased sleep latency, whereas tan is unable to consolidate locomotor activity and sleep in either phase of the day. The daily level of NBAD-synthase activity is measured in vitro using wild-type and tan1 protein extracts, and the lowest NBAD synthesis is observed at the time of higher locomotor activity. The abnormalities in several parameters of the waking/sleep cycle indicate some dysfunction in the processes that regulates these behaviours in both mutants. © 2015 The Royal Entomological Society.  |l eng 
593 |a Department of Biological Chemistry, FCEyN, University of Buenos Aires, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina 
690 1 0 |a DOPAMINE 
690 1 0 |a EBONY 
690 1 0 |a LOCOMOTOR ACTIVITY 
690 1 0 |a N-Β-ALANYLDOPAMINE 
690 1 0 |a SLEEP 
690 1 0 |a TAN 
690 1 0 |a WILD-TYPE 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FLY 
690 1 0 |a LOCOMOTION 
690 1 0 |a METABOLISM 
690 1 0 |a MUTATION 
690 1 0 |a SLEEP 
690 1 0 |a DROSOPHILA MELANOGASTER 
700 1 |a Bochicchio, P.A. 
700 1 |a Quesada-Allué, L.A. 
700 1 |a Pérez, M.M. 
773 0 |d Blackwell Publishing Ltd, 2015  |g v. 40  |h pp. 166-174  |k n. 2  |p Physiol.Entomol.  |x 03076962  |w (AR-BaUEN)CENRE-6487  |t Physiological Entomology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929315510&doi=10.1111%2fphen.12100&partnerID=40&md5=0d8b220befb202545eac217325aceec6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/phen.12100  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03076962_v40_n2_p166_Rossi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03076962_v40_n2_p166_Rossi  |y Registro en la Biblioteca Digital 
961 |a paper_03076962_v40_n2_p166_Rossi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74766