Chasing ghosts: The phylogeny of Amaurobioidinae ghost spiders (Araneae, Anyphaenidae)

The family Anyphaenidae, also known as ghost spiders, includes a diverse array of nocturnal cursorial spiders that actively hunt on vegetation. The family is mostly distributed in the Americas and has been traditionally divided into three subfamilies. The mostly tropical and North American Anyphaeni...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Labarque, F.M
Otros Autores: Soto, E.M, Ramírez, M.J, Arnedo, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14957caa a22010097a 4500
001 PAPER-13765
003 AR-BaUEN
005 20230518204411.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84939001130 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ZLSCA 
100 1 |a Labarque, F.M. 
245 1 0 |a Chasing ghosts: The phylogeny of Amaurobioidinae ghost spiders (Araneae, Anyphaenidae) 
260 |b Blackwell Publishing Ltd  |c 2015 
270 1 0 |m Labarque, F.M.; Entomology Department, California Academy of Sciences, 55 Music Concourse Drive, United States 
506 |2 openaire  |e Política editorial 
504 |a Agnarsson, I., Maddison, W.P., Avilés, L., The phylogeny of the social Anelosimus spiders (Araneae: Theridiidae) inferred from six molecular loci and morphology (2007) Molecular Phylogenetics and Evolution, 43, pp. 833-851 
504 |a Akaike, H., Information theory and an extension of the maximum likelihood principle (1973), pp. 267-281. , In B. N. Petrov & F. Csáki (Eds) 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR September 2-8, 1971, Budapest: Akadémiai Kiadó; Álvarez-Padilla, F., Dimitrov, D., Giribet, G., Hormiga, G., Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data (2009) Cladistics, 25, pp. 109-146 
504 |a Arnedo, M.A., Coddington, J., Agnarsson, I., Gillespie, R.G., From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes (2004) Molecular Phylogenetics and Evolution, 31, pp. 225-245 
504 |a Arnedo, M.A., Hormiga, G., Scharff, N., Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence (2009) Cladistics, 25, pp. 231-262 
504 |a Bond, J.E., Hedin, M., A total evidence assessment of the phylogeny of North American euctenizine trapdoor spiders (Araneae, Mygalomorphae, Cyrtaucheniidae) using Bayesian inference (2006) Molecular Phylogenetics and Evolution, 41, pp. 70-85 
504 |a Bond, J.E., Hendrixson, B.E., Hamilton, C.A., Hedin, M., A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology (2012) PLoS One, 7, p. e38753 
504 |a Brescovit, A.D., Revisão de Anyphaeninae Bertkau a nível de gêneros na região Neotropical (Araneae, Anyphaenidae) (1997) Revista Brasileira de Zoologia, 13, pp. 1-187 
504 |a Brown, J.M., Lemmon, A.R., The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics (2007) Systematic Biology, 56, pp. 643-655 
504 |a Bruvo-Madaric, B., Huber, B.A., Steinacher, A., Pass, G., Phylogeny of pholcid spiders (Araneae: Pholcidae): combined analysis using morphology and molecules (2005) Molecular Phylogenetics and Evolution, 37, pp. 661-673 
504 |a Buckley, T.R., Arensburger, P., Simon, C., Chambers, G.K., Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera (2002) Systematic Biology, 51, pp. 4-18 
504 |a Darriba, D., Taboada, G.L., Doallo, R., Posada, D., jModelTest 2: more models, new heuristics and parallel computing (2012) Nature Methods, 9, p. 772 
504 |a Forster, R.R., The spiders of New Zealand. Part III (1970) Otago Museum Bulletin, 3, pp. 1-184 
504 |a Goloboff, P.A., Estimating character weights during tree search (1993) Cladistics, 9, pp. 83-91 
504 |a Goloboff, P.A., Farris, J.S., Nixon, K.C., TNT, a free program for phylogenetic analysis (2008) Cladistics, 24, pp. 774-786 
504 |a Goloboff, P.A., Carpenter, J.M., Arias, J.S., Miranda Esquivel, D.R., Weighting against homoplasy improves phylogenetic analysis of morphological data sets (2008) Cladistics, 24, pp. 1-16 
504 |a González Márquez, M.E., Ramírez, M.J., A revision and phylogenetic analysis of the spider genus Aysenia Tullgren (Araneae: Anyphaenidae, Amaurobioidinae) (2012) Zootaxa, 3201, pp. 1-26 
504 |a Guindon, S., Gascuel, O., A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood (2003) Systematic Biology, 52, pp. 696-704 
504 |a Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symposium, 41, pp. 95-98 
504 |a Hedtket, S.M., Townsend, T.M., Hills, D.M., Resolution of phylogenetic conflict in large data sets by increased taxon sampling (2006) Systematic Biology, 55, pp. 522-529 
504 |a Izquierdo, M.A., Ramírez, M.J., Two new spider species of the genera Aysenia and Aysenoides from southern Chile and Argentina: description and phylogenetic relationships (Araneae: Anyphaenidae, Amaurobioidinae) (2008) Zootaxa, 1861, pp. 29-43 
504 |a Katoh, K., Toh, H., Parallelization of the MAFFT multiple sequence alignment program (2010) Bioinformatics, 26, pp. 1899-1900 
504 |a Laborda, A., Ramírez, M.J., Pizarro-Araya, J., New species of the spider genera Aysenia and Aysenoides from Chile and Argentina: description and phylogenetic relationships (Araneae: Anyphaenidae, Amaurobioidinae) (2013) Zootaxa, 3731, pp. 133-152 
504 |a Lamoral, B.H., On the ecology and habitat adaptations of two intertidal spiders, Desis formidabilis (O.P. Cambridge) and Amaurobioides africanus Hewitt, at "The Island" (Kommetjie, Cape Peninsula), with notes on the occurrence of two other spiders (1968) Annals of the Natal Museum, 20, pp. 151-193 
504 |a Librado, P., Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data (2009) Bioinformatics, 25, pp. 1451-1452 
504 |a Lewis, P., A likelihood approach to estimating phylogeny from discrete morphological character data (2001) Systematic Biology, 50, pp. 913-925 
504 |a Lopardo, L., Phylogenetic revision of the genus Negayan (Araneae, Anyphaenidae, Amaurobioidinae) (2005) Zoologica Scripta, 34, pp. 245-277 
504 |a Lopardo, L., Giribet, G., Hormiga, G., Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses-a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture (2011) Cladistics, 27, pp. 278-330 
504 |a Miller, M.A., Pfeiffer, W., Schwartz, T., Creating the CIPRES Science Gateway for inference of large phylogenetic trees (2010) In: Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1-8. , 14 November 2010, New Orleans, LA 
504 |a Nixon, K.C., (2002) WinClada, , http://www.cladistics.com, Ithaca, NY: Author. Available via 
504 |a Platnick, N.I., The spider family Anyphaenidae in America, north of Mexico (1974) Bulletin of the Museum of Comparative Zoology, 146, pp. 205-266 
504 |a Rambaut, A., (2006), http://tree.bio.ed.ac.uk/, 2014. Tree Figure Drawing Tool Version 1.4. Institute of Evolutionary Biology, University of Edinburgh. Available via; Rambaut, A., Drummund, A.J., (2009), http://tree.bio.ed.ac.uk/software/tracer, Tracer Version 1.5: MCMC trace analysis tool. Institute of Evolutionary Biology, University of Edinburgh. Available via; Ramírez, M.J., A phylogenetic analysis of the subfamilies of Anyphaenidae (Arachnida, Araneae) (1995) Entomologica Scandinavica, 26, pp. 361-384 
504 |a Ramírez, M.J., The spider subfamily Amaurobioidinae (Araneae, Anyphaenidae): a phylogenetic revision at the generic level (2003) Bulletin of the American Museum of Natural History, 277, pp. 1-262 
504 |a Ramírez, M.J., Homology as a parsimony problem: a dynamic homology approach for morphological data (2007) Cladistics, 23, pp. 588-612 
504 |a Ramírez, M.J., The morphology and phylogeny of dionychan spiders (Araneae, Araneomorphae) (2014) Bulletin of the American Museum of Natural History, 390, pp. 1-374 
504 |a Ramírez, M.J., Ansaldi, M.J., Puglisi, A.F., Description of the females of Oxysoma itambezinho Ramírez and Monapia tandil Ramírez, and their effects on the generic relationships of Gayennini (Araneae, Anyphaenidae, Amaurobioidinae) (2004) Zootaxa, 668, pp. 1-8 
504 |a Rindal, E., Brower, A.V.Z., Do model-based phylogenetic analyses perform better than parsimony? A test with empirical data (2011) Cladistics, 27, pp. 331-334 
504 |a Ronquist, F., Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models (2003) Bioinformatics, 19, pp. 1572-1574 
504 |a Rubio, G.D., Corronca, J.A., Damborsky, M.P., Do spider diversity and assemblages change in different contiguous habitats? A case study in the protected habitats of the humid Chaco Ecoregion, Northeast Argentina (2008) Environmental Entomology, 37, pp. 419-430 
504 |a Silva, D., Species composition and community structure of peruvian rainforest spiders: a case study from a seasonally inundated forest along the Samiria river (1996) Revue Suisse de Zoologie, pp. 597-610. , Hors série 
504 |a Silva, D., Coddington, J.A., Spiders of Pakitza (Madre de Dios, Peru): species richness and notes on community structure (1996) Manu. The Biodiversity of Southeastern Peru, pp. 253-311. , In D. E. Wilson & A. Sandoval (Eds) Washington: Smithsonian Institution 
504 |a Silvestro, D., Michalak, I., raxmlGUI: a graphical front-end for RAxML (2011) Organisms Diversity & Evolution, 12, pp. 335-337 
504 |a Simmons, M.P., Ochoterena, H., Gaps as characters in sequencebased phylogenetic analyses (2000) Systematic Biology, 49, pp. 369-381 
504 |a Soto, E.M., Ramírez, M.J., Revision and phylogenetic analysis of the spider genus Philisca Simon (Araneae: Anyphaenidae, Amaurobioidinae) (2012) Zootaxa, 3443, pp. 1-65 
504 |a Stamatakis, A., RAxML-VI-HPC: maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models (2006) Bioinformatics, 22, pp. 2688-2690 
504 |a Stamatakis, A., Hoover, P., Rougemont, J., A fast bootstrapping algorithm for the RAxML web-servers (2008) Systematic Biology, 57, pp. 758-771 
504 |a Werenkraut, V., Ramírez, M.J., A revision and phylogenetic analysis of the spider genus Coptoprepes Simon (Araneae: Anyphaenidae, Amaurobioidinae) (2009) Zootaxa, 2212, pp. 1-40 
504 |a Wheeler, W.C., Hayashi, C.Y., The phylogeny of the extant chelicerate orders (1998) Cladistics, 14, pp. 173-192 
504 |a Wiens, J., Missing data, incomplete taxa, and phylogenetic accuracy (2003) Systematic Biology, 52, p. 528 
504 |a Wiens, J., Missing data and the design of phylogenetic analyses (2006) Journal of Biomedical Informatics, 39, pp. 34-42 
504 |a Wolff, J.O., Nentwig, W., Gorb, S.N., The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders (2013) PLoS One, 8, pp. e62682+1-13 
504 |a Wood, H.M., Griswold, C.E., Gillespie, R.G., Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into evolution of the "neck" and predatory behaviours of the superfamily Palpimanoidea (2012) Cladistics, 28, pp. 598-626 
504 |a (2015), http://wsc.nmbe.ch, World Spider Catalog. Natural History Museum Bern, Available via, version 16 (accessed on 22.1.2015); Wortley, A.H., Scotland, R.W., The effect of combining molecular and morphological data in published phylogenetic analyses (2006) Systematic Biology, 55, pp. 677-685 
504 |a Young, N.D., Healy, J., (2002), http://www.trinity.edu/nyoung/GapCoder/Download.html, GapCoder. Available via 
520 3 |a The family Anyphaenidae, also known as ghost spiders, includes a diverse array of nocturnal cursorial spiders that actively hunt on vegetation. The family is mostly distributed in the Americas and has been traditionally divided into three subfamilies. The mostly tropical and North American Anyphaeninae and the Amaurobioidinae, primarily distributed in southern South America, hold the bulk of the diversity, while the Malenellininae includes a single Chilean species. Here, we use a combined morphological and molecular approach to infer the relationships of the subfamily Amaurobioidinae and examine the delimitation of contentious genera. The morphological characters include both genitalic and somatic morphology, whereas molecular data include four markers, two mitochondrial (COI, 16S) and two nuclear (28S, H3). All our analyses agree on the monophyly of Amaurobioidinae, Amaurobioidini, Gayennini, the genera Negayan, Amaurobioides, Josa, Araiya, Arachosia and Monapia, as well as the paraphyly of Anyphaeninae. The total evidence analysis supports the novel placement of Josa as the sister group of both tribes Amaurobioidini and Gayennini, most of the previously known intergeneric relationships within Gayennini, and a clade of Amaurobioidini with a projecting ocular area, including Aysenoides, Axyracrus, Amaurobioides and Aysenia. The sequence data solve the puzzling placement of Philisca puconensis, here transferred to Tomopisthes, and Tasata chiloensis, transferred to Oxysoma. The advantages of the total evidence phylogenetic approach and the evolution of the male copulatory organ are discussed. © 2015 Royal Swedish Academy of Sciences.  |l eng 
593 |a Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina 
593 |a Division of Arachnology, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1405DJR, Argentina 
593 |a Departament de Biologia Animal and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 645, Barcelona, E-8028, Spain 
690 1 0 |a ANYPHAENIDAE 
690 1 0 |a ARANEAE 
700 1 |a Soto, E.M. 
700 1 |a Ramírez, M.J. 
700 1 |a Arnedo, M.A. 
773 0 |d Blackwell Publishing Ltd, 2015  |g v. 44  |h pp. 550-561  |k n. 5  |p Zool. Scr.  |x 03003256  |t Zoologica Scripta 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84939001130&doi=10.1111%2fzsc.12119&partnerID=40&md5=53641d1021ccf520d8d9ed9fb97aebf6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/zsc.12119  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03003256_v44_n5_p550_Labarque  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03003256_v44_n5_p550_Labarque  |y Registro en la Biblioteca Digital 
961 |a paper_03003256_v44_n5_p550_Labarque  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74718