A phasin with extra talents: A polyhydroxyalkanoate granule-associated protein has chaperone activity

Phasins are proteins associated to intracellular polyhydroxyalkanoate granules that affect polymer accumulation and the number and size of the granules. Previous work demonstrated that a phasin from Azotobacter sp FA-8 (PhaP<inf>Az</inf>) had an unexpected growth-promoting and stress-pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mezzina, M.P
Otros Autores: Wetzler, D.E, de Almeida, A., Dinjaski, N., Prieto, M.A, Pettinari, M.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Phasins are proteins associated to intracellular polyhydroxyalkanoate granules that affect polymer accumulation and the number and size of the granules. Previous work demonstrated that a phasin from Azotobacter sp FA-8 (PhaP<inf>Az</inf>) had an unexpected growth-promoting and stress-protecting effect in Escherichia coli, suggesting it could have chaperone-like activities. In this work, in vitro and in vivo experiments were performed in order to investigate this possibility. PhaP<inf>Az</inf> was shown to prevent in vitro thermal aggregation of the model protein citrate synthase and to facilitate the refolding process of this enzyme after chemical denaturation. Microscopy techniques were used to analyse the subcellular localization of PhaP<inf>Az</inf> in E.coli strains and to study the role of PhaP<inf>Az</inf> in in vivo protein folding and aggregation. PhaP<inf>Az</inf> was shown to colocalize with inclusion bodies of PD, a protein that aggregates when overexpressed. A reduction in the number of inclusion bodies of PD was observed when it was coexpressed with PhaP<inf>Az</inf> or with the known chaperone GroELS. These results demonstrate that PhaP<inf>Az</inf> has chaperone-like functions both in vitro and in vivo in E.coli recombinants, and suggests that phasins could have a general protective role in natural polyhydroxyalkanoate producers. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Bibliografía:de Almeida, A., Nikel, P.I., Giordano, A.M., Pettinari, M.J., Effects of granule-associated protein PhaP on glycerol-dependent growth and polymer production in poly(3-hydroxybutyrate)-producing Escherichia coli (2007) Appl Environ Microbiol, 73, pp. 7912-7916
de Almeida, A., Catone, M.V., Rhodius, V.A., Gross, C.A., Pettinari, M.J., Unexpected stress-reducing effect of PhaP, a poly(3-hydroxybutyrate) granule-associated protein, in Escherichia coli (2011) Appl Environ Microbiol, 77, pp. 6622-6629
Alonso, L.G., Smal, C., Garcia-Alai, M.M., Chemes, L., Salame, M., de Prat-Gay, G., Chaperone holdase activity of human papillomavirus E7 oncoprotein (2006) Biochemistry, 45, pp. 657-667
Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66
Banki, M.R., Gerngross, T.U., Wood, D.W., Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate ( PHB ) matrix association (2005) Protein Sci, 14, pp. 1387-1395
Bolte, S., Cordelières, F.P., A guided tour into subcellular colocalization analysis in light microscopy (2006) J Microsc, 224, pp. 213-232
Buchner, J., Grallert, H., Jakob, U., Analysis of chaperone function using citrate synthase as nonnative substrate protein (1998) Methods Enzymol, 290, pp. 323-338
Carrió, M.M., Villaverde, A., Role of molecular chaperones in inclusion body formation (2003) FEBS Lett, 537, pp. 215-221
Carrió, M.M., Villaverde, A., Localization of chaperones DnaK and GroEL in bacterial inclusion bodies (2005) J Bacteriol, 187, pp. 3599-3601
Dennis, D., Sein, V., Martinez, E., Augustine, B., PhaP is involved in the formation of a network on the surface of polyhydroxyalkanoate inclusions in Cupriavidus necator H16 (2008) J Bacteriol, 190, pp. 555-563
Galán, B., Dinjaski, N., Maestro, B., de Eugenio, L.I., Escapa, I.F., Sanz, J.M., Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442 (2011) Mol Microbiol, 79, pp. 402-418
Gill, R.T., Valdes, J.J., Bentley, W.E., A comparative study of global stress gene regulation in response to overexpression of recombinant proteins in Escherichia coli (2000) Metab Eng, 2, pp. 178-189
Guisbert, E., Yura, T., Rhodius, V.A., Gross, C.A., Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response (2008) Microbiol Mol Biol Rev, 72, pp. 545-554
Han, M., Yoon, S.S., Lee, S.Y., Proteome analysis of metabolically engineered Escherichia coli producing poly ( 3-hydroxybutyrate ) (2001) J Bacteriol, 183, pp. 301-308
Handrick, R., Reinhardt, S., Schultheiss, D., Reichart, T., Jendrossek, V., Jendrossek, D., Unraveling the function of the Rhodospirillum rubrum activator ofPolyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (Phasin) (2004) J Bacteriol, 186, pp. 2466-2475
Hoffmann, F., Rinas, U., Stress induced by recombinant protein production in Escherichia coli (2004) Adv Biochem Eng Biotechnol, 89, pp. 73-92
Jürgen, B., Lin, H.Y., Riemschneider, S., Scharf, C., Neubauer, P., Schmid, R., Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations (2000) Biotechnol Bioeng, 70, pp. 217-224
Kadouri, D., Jurkevitch, E., Okon, Y., Castro-Sowinski, S., Ecological and agricultural significance of bacterial polyhydroxyalkanoates (2005) Crit Rev Microbiol, 31, pp. 55-67
Keshavarz, T., Roy, I., Polyhydroxyalkanoates: bioplastics with a green agenda (2010) Curr Opin Microbiol, 13, pp. 321-326
Kitagawa, M., Matsumura, Y., Tsuchido, T., Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli (2000) FEMS Microbiol Lett, 184, pp. 165-171
Kuchta, K., Chi, L., Fuchs, H., Pötter, M., Steinbüchel, A., Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16 (2007) Biomacromolecules, 8, pp. 657-662
Laskowskaa, E., Wawrzynow, A., Taylor, A., lbpA and IbpB, the new heat-shock proteins bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock (1996) Biochimie, 78, pp. 117-122
Lindner, A.B., Madden, R., Demarez, A., Stewart, E.J., Taddei, F., Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation (2008) Proc Natl Acad Sci USA, 105, pp. 3076-3081
López, N.I., Floccari, M., Steinbüchel, A., García, A.F., Méndez, B., Effect of poly(3-hydroxybutyrate) (PHB) content on the starvation-survival of bacteria in natural waters (1995) FEMS Microbiol Ecol, 16, pp. 95-101
Maestro, B., Galán, B., Alfonso, C., Rivas, G., Prieto, M.A., Sanz, J.M., A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440 (2013) PLoS ONE, 8, p. e56904
Mezzina, M.P., Wetzler, D.E., Catone, V.M., Bucci, H., Di Paola, M., Pettinari, M.J., A phasin with many faces: structural insights on PhaP from Azotobacter sp. FA8 (2014) PLoS ONE, 9, p. e103012
Moldes, C., García, P., García, L., Prieto, M.A., In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF (2004) Appl Environ Microbiol, 70, pp. 3205-3212
Pais, J., Farinha, I., Freitas, F., Serafim, L.S., Martínez, V., Martínez, J.C., Improvement on the yield of polyhydroxyalkanotes production from cheese whey by a recombinant Escherichia coli strain using the proton suicide methodology (2014) Enzyme Microb Technol, 55, pp. 151-158
Pettinari, M., Chaneton, L., Vazquez, G., Steinbüchel, A., Méndez, B.S., Insertion sequence-like elements associated with putative polyhydroxybutyrate regulatory genes in Azotobacter sp. FA8 (2003) Plasmid, 50, pp. 36-44
Pfeiffer, D., Jendrossek, D., Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16 (2012) J Bacteriol, 194, pp. 5909-5921
Pfeiffer, D., Wahl, A., Jendrossek, D., Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16 (2011) Mol Microbiol, 82, pp. 936-951
Pötter, M., Müller, H., Reinecke, F., Wieczorek, R., Fricke, F., Bowien, B., The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha (2004) Microbiology, 150, pp. 2301-2311
Qi, Q., Steinbuchel, A., Rehm, B.H.A., In vitro synthesis of poly (3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa (2000) Appl Microbiol Biotechnol, 54, pp. 37-43
Reddy, C.S., Ghai, R.R., Kalia, V., Polyhydroxyalkanoates: an overview (2003) Bioresour Technol, 87, pp. 137-146
Ruiz, J., Lopez, N., Fernández, R.O., Mendez, B., Polyhydroxyalkanoate degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms (2001) Appl Environ Microbiol, 67, pp. 225-230
Smock, R.G., Blackburn, M.E., Gierasch, L.M., Conserved, disordered C terminus of DnaK enhances cellular survival upon stress and DnaK in vitro chaperone activity (2011) J Biol Chem, 286, pp. 31821-31829
Tal, S., Okon, Y., Production of the reserve material poly-P-hydroxybutyrate and its function in Azospirillum brasilense Cd (1985) Can J Microbiol, 31, pp. 608-613
Tessmer, N., König, S., Malkus, U., Reichelt, R., Pötter, M., Steinbüchel, A., Heat-shock protein HspA mimics the function of phasins sensu stricto in recombinant strains of Escherichia coli accumulating polythioesters or polyhydroxyalkanoates (2007) Microbiology, 153, pp. 366-374
Thomas, J., Baneyx, F., Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo (1998) J Bacteriol, 180, pp. 5165-5172
Tian, S.-J., Lai, W.-J., Zheng, Z., Wang, H.-X., Chen, G.-Q., Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (2005) FEMS Microbiol Lett, 244, pp. 19-25
Wang, Y., Yin, J., Chen, G.-Q., Polyhydroxyalkanoates, challenges and opportunities (2014) Curr Opin Biotechnol, pp. 59-65
Wei, D.-X., Chen, C.-B., Fang, G., Li, S.-Y., Chen, G.-Q., Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant (2011) Appl Microbiol Biotechnol, 91, pp. 1037-1047
Wieczorek, R., Pries, A., Steinbüchel, A., Mayer, F., Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus (1995) J Bacteriol, 177, pp. 2425-2435
Yasukawa, T., Kanei-Ishii, C., Maekawa, T., Fujimoto, J., Yamamoto, T., Ishii, S., Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin (1995) J Biol Chem, 270, pp. 25328-25331
York, G.M., Stubbe, J., Sinskey, A.J., New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate (2001) J Bacteriol, 183, pp. 2394-2397
ISSN:14622912
DOI:10.1111/1462-2920.12636