Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems

β-Cyclodextrin (β-CD)-grafted dextrans with spacer arms of different length were employed to evaluate the impact of supramolecular interactions on invertase activity. The modified dextrans were used as single additives or combined with trehalose in freeze-dried formulations containing invertase. Enz...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Santagapita, P.R
Otros Autores: Mazzobre, M.F, Buera, M.P, Ramirez, H.L, Brizuela, L.G, Corti, H.R, Villalonga, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Inc. 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13345caa a22014297a 4500
001 PAPER-13674
003 AR-BaUEN
005 20230518204404.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84931572761 
024 7 |2 cas  |a beta cyclodextrin, 7585-39-9; beta fructofuranosidase, 9001-57-4; dextran, 87915-38-6, 9014-78-2; trehalose, 99-20-7; beta-Cyclodextrins; beta-Fructofuranosidase; betadex; Dextrans; Polymers; Trehalose 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BIPRE 
100 1 |a Santagapita, P.R. 
245 1 0 |a Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems 
260 |b John Wiley and Sons Inc.  |c 2015 
270 1 0 |m Buera, M.P.; Industry Dept., Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Guiraldes 2160 - Ciudad Universitaria, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Pikal, M.J., Mechanisms of protein stabilization during freeze-drying and storage: the relative importance of thermodynamic stabilization and glassy state relaxation dynamics (1999) Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, pp. 161-198. , Rey L, May JC, editors. New York: Marcel Dekker Inc 
504 |a Santagapita, P.R., Gómez Brizuela, L., Mazzobre, M.F., Ramírez, H.L., Corti, H.R., Villalonga Santana, R., Buera, M.P., Structure/function relationships of several biopolymers as related to invertase stability in dehydrated systems (2008) Biomacromolecules, 9, pp. 741-747 
504 |a Santagapita, P.R., Gómez Brizuela, L., Mazzobre, M.F., Ramírez, H.L., Corti, H.R., Villalonga Santana, R., Buera, M.P., β-Cyclodextrin modifications as related to enzyme stability in dehydrated systems: supramolecular transitions and molecular interactions (2011) Carbohydr Polym, 83, pp. 203-209 
504 |a Santagapita, P.R., Mazzobre, M.F., Cruz, A.G., Corti, H.R., Villalonga Santana, R., Buera, M.P., Polyethylene glycol-based low generation dendrimers functionalized with β-cyclodextrin as cryo- and dehydro-protectant of catalase formulations (2013) Biotechnol Prog, 29, pp. 786-795 
504 |a Buera, M.P., Rossi, S., Moreno, S., Chirife, J., DCS confirmation that vitrification is not necessary for stabilization of the restriction enzyme EcoRI with saccharides (1999) Biotechnol Prog, 15, pp. 577-580 
504 |a Mazzobre, M.F., Buera, M.P., Chirife, J., Glass transition and thermal stability of lactase in low-moisture amorphous polymeric matrices (1997) Biotechnol Progr, 13, pp. 195-199 
504 |a Santagapita, P.R., Buera, M.P., Trehalose-water-salt interactions related to the stability of β-galactosidase in supercooled media (2008) Food Biophys, 3, pp. 87-93 
504 |a Lee, S.L., Hafeman, A.E., Debenedetti, P.G., Pethica, B.A., Moore, D.J., Solid-state stabilization of α-chymotrypsin and catalase with carbohydrates (2006) Indust Eng Chem Res, 45, pp. 5134-5147 
504 |a Martínez, A., Ortiz Mellet, C., García Fernández, J.M., Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate-protein interactions (2013) Chem Soc Rev, 42, pp. 4746-4773 
504 |a Villalonga, R., Cao, R., Fragoso, A., Supramolecular chemistry of cyclodextrins in enzyme technology (2007) Chem Rev, 107, pp. 3088-3116 
504 |a Fernández, M., Fragoso, A., Cao, R., Villalonga, R., Improved functional properties of trypsin modified by monosubstituted amino-β-cyclodextrins (2003) J Mol Catal B: Enzym, 21, pp. 133-141 
504 |a Fernández, M., Villalonga, M.L., Caballero, J., Fragoso, A., Cao, R., Villalonga, R., Effects of β-cyclodextrin-dextran polymer on stability properties of trypsin (2003) Biotechnol Bioeng, 83, pp. 743-747 
504 |a Sainz-Polo, M.A., Ramírez-Escudero, M., Lafraya, A., González, B., Marín-Navarro, J., Polaina, J., Sanz-Aparicio, J., Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity (2013) J Biol Chem, 288, pp. 9755-9766 
504 |a Kaiser, C.A., Botstein, D., Secretion-defective mutations in the signal sequence for Saccharomyces cerevisiae invertase (1986) Mol Cell Biol, 6, pp. 2382-2391 
504 |a Sperling, L.H., (2006) Introduction to Physical Polymer Science, , 4th ed. Hoboken, NJ: Wiley; 
504 |a Ramírez, H.L., Valdivia, A., Cao, R., Torres-Labandeira, J.J., Fragoso, A., Villalonga, R., Cyclodextrin-grafted polysaccharides as supramolecular carrier systems for naproxen (2006) Bioorg Med Chem Lett, 16, pp. 1499-1501 
504 |a Zhong, N., Byun, H.S., Bittman, R., An improved synthesis of 6-o-monotosyl-6-deoxy- β-cyclodextrin (1998) Tetrahedron Lett, 39, pp. 2919-2920 
504 |a Bonomo, R., Cucinotta, V., D'Allesandro, F., Impellizzeri, G., Maccarrone, G., Rizzarelli, E., Vecchio, G., Coordination properties of 6-deoxy-6-[(1-(2-amino) ethylamino]-β-cyclodextrin and the ability of it copper (II) complex to recognize and separate amino acid enantiomeric pairs (1993) J Inclusion Phenom Mol Recognit Chem, 15, pp. 167-180 
504 |a Mentzafos, D., Terzis, A., Coleman, A., Rango, C., The crystal structure of 6 I-(6-aminohexyl) amino-6 I-deoxycyclomaltoheptaose (1996) Carbohydr Res, 282, pp. 125-135 
504 |a Schneider, H.J., Xiao, F., Binding and catalysis with a metal-induced ternary complex of an ethylenediamine-substituted cyclodextrin (1992) J Chem Soc Perkin Trans, 2, pp. 387-391 
504 |a Greenspan, L.J., Humidity fixed points of binary saturated aqueous solutions (1977) J Res Nat Bureau Standards A: Phys Chem, 81A, pp. 89-96 
504 |a Bernfeld, P., Amylases α and β (1955) Methods Enzymol, 1, pp. 149-158 
504 |a Santagapita, P.R., Buera, M.P., Electrolyte effects on amorphous and supercooled sugar systems (2008) J Non-Cryst Solids, 354, pp. 1760-1767 
504 |a Zeng, W., Du, Y., Xue, Y., Frisch, H.L., Mark-Houwink-Staundinger-Sakurada constants (2007) Physical Properties of Polymers Handbook, pp. 305-315. , Mark JE, editor. Second edition. New York: Springer Science+Business Media, Ltd 
504 |a Flory, P.J., (1953) Principles of Polymer Chemistry, , Ithaca, NY: Cornell University Press; 
504 |a Armstrong, J.K., Wenby, R.B., Meiselman, H.J., Fisher, T.C., The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation (2004) Biophys J, 87, pp. 4259-4270 
504 |a de Belder, A.N., (2003) Dextran. Handbooks from Amersham Bioscience, , Uppsala: Amersham Bioscience AB; 
504 |a Ramirez, H.L., Valdivia, A., Cao, R., Fragoso, A., Torres Labandeira, J.J., Baños, M., Villalonga, R., Preparation of β-cyclodextrin-dextran polymers and their use as supramolecular carrier systems for naproxen (2007) Pol Bull, 59, pp. 597-605 
504 |a Angell, C.A., Sare, J.M., Sare, E.J., Glass transition temperatures for simple molecular liquids and their binary solutions (1978) J Phys Chem, 82, pp. 2622-2629 
504 |a Icoz, D.Z., Moraru, C.I., Kokini, J.L., Polymer-polymer interactions in dextran systems using thermal analysis (2005) Carbohydr Polym, 62, pp. 120-129 
504 |a Wolkers, W.F., Oliver, A.E., Tablin, F., Crowe, J.H., A Fourier-transform infrared spectroscopy study of sugar glasses (2004) Carbohydr Res, 339, pp. 1077-1085 
504 |a Hemminga, M.A., van der Dries, I.J., Spin label applications to food science (1998) Biological Magnetic Resonance, Vol. 14: Spin Labeling: The Next Millennium, pp. 339-366. , Berliner LJ, editor.New York: Plenum Press; 
504 |a Mazzobre, M.F., Hough, G., Buera, M.P., Phase transitions and functionality of enzymes and yeast in dehydrated matrices (2003) Food Sci Technol Int, 9, pp. 163-172 
504 |a Buera, M.P., Schebor, C., Elizalde, B., Effects of carbohydrate crystallization on stability of dehydrated foods and ingredient formulations (2005) J Food Eng, 67, pp. 157-165 
504 |a Schebor, C., Mazzobre, M.F., Buera, M.P., Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars (2010) Carbohydr Res, 345, pp. 303-308 
504 |a Sun, W.Q., Davidson, P., Protein inactivation in amorphous sucrose and trehalose matrices: Effects of phase separation and crystallization (1998) Biochim Biophys Acta, 1425, pp. 235-244 
504 |a Suzuki, T., Imamura, K., Yamamoto, K., Satoh, T., Okazaki, M., Thermal stabilization of freeze-dried enzymes by sugars (1997) J Chem Eng Jpn, 30, pp. 609-613 
520 3 |a β-Cyclodextrin (β-CD)-grafted dextrans with spacer arms of different length were employed to evaluate the impact of supramolecular interactions on invertase activity. The modified dextrans were used as single additives or combined with trehalose in freeze-dried formulations containing invertase. Enzyme activity conservation was analyzed after freeze-drying and thermal treatment. The change of glass transition temperature (T<inf>g</inf>) was also evaluated and related to effective interactions. Outstanding differences on enzyme stability were mainly related to the effect of the spacer arm length on polymer-enzyme interactions, since both the degree of substitution and the molecular weight were similar for the two polymers. This change of effective interactions was also manifested in the pronounced reduction of T<inf>g</inf> values, and were related to the chemical modification of the backbone during oxidation, and to the attachment of the β-CD units with spacer arms of different length on dextran. © 2015 American Institute of Chemical Engineers.  |l eng 
593 |a Industry Dept., Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Guiraldes 2160 - Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Organic Chemistry Dept., Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Guiraldes 2160 - Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a National Council of Scientific and Technical Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Center for Enzyme Technology, University of Matanzas, Matanzas, C.P. 44740, Cuba 
593 |a Dept. de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avda. General Paz 1499, San Martín, Buenos Aires, 1650, Argentina 
593 |a Inst. de Química Física de los Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
593 |a Dept. of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Madrid, Av de Séneca, 2, Madrid, 28040, Spain 
690 1 0 |a DEXTRAN 
690 1 0 |a ENZYME STABILITY 
690 1 0 |a GLASS TRANSITION TEMPERATURE (T<INF>G</INF>) 
690 1 0 |a SUPRAMOLECULAR INTERACTIONS 
690 1 0 |a Β-CYCLODEXTRIN 
690 1 0 |a CHEMICAL MODIFICATION 
690 1 0 |a CYCLODEXTRINS 
690 1 0 |a DEXTRAN 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a ENZYMES 
690 1 0 |a GLASS 
690 1 0 |a POLYMERS 
690 1 0 |a SUPRAMOLECULAR CHEMISTRY 
690 1 0 |a TEMPERATURE 
690 1 0 |a CYCLODEXTRIN POLYMER 
690 1 0 |a DEGREE OF SUBSTITUTION 
690 1 0 |a EFFECTIVE INTERACTIONS 
690 1 0 |a ENZYME INTERACTION 
690 1 0 |a ENZYME STABILITY 
690 1 0 |a FREEZE-DRIED FORMULATIONS 
690 1 0 |a INVERTASE ACTIVITY 
690 1 0 |a SUPRAMOLECULAR INTERACTIONS 
690 1 0 |a GLASS TRANSITION 
690 1 0 |a BETA CYCLODEXTRIN 
690 1 0 |a BETA CYCLODEXTRIN DERIVATIVE 
690 1 0 |a BETA FRUCTOFURANOSIDASE 
690 1 0 |a DEXTRAN 
690 1 0 |a GLASS 
690 1 0 |a POLYMER 
690 1 0 |a TREHALOSE 
690 1 0 |a CHEMISTRY 
690 1 0 |a ENZYME STABILITY 
690 1 0 |a FREEZE DRYING 
690 1 0 |a MOLECULAR WEIGHT 
690 1 0 |a TRANSITION TEMPERATURE 
690 1 0 |a BETA-CYCLODEXTRINS 
690 1 0 |a BETA-FRUCTOFURANOSIDASE 
690 1 0 |a DEXTRANS 
690 1 0 |a ENZYME STABILITY 
690 1 0 |a FREEZE DRYING 
690 1 0 |a GLASS 
690 1 0 |a MOLECULAR WEIGHT 
690 1 0 |a POLYMERS 
690 1 0 |a TRANSITION TEMPERATURE 
690 1 0 |a TREHALOSE 
700 1 |a Mazzobre, M.F. 
700 1 |a Buera, M.P. 
700 1 |a Ramirez, H.L. 
700 1 |a Brizuela, L.G. 
700 1 |a Corti, H.R. 
700 1 |a Villalonga, R. 
773 0 |d John Wiley and Sons Inc., 2015  |g v. 31  |h pp. 791-798  |k n. 3  |p Biotechnol. Prog.  |x 87567938  |w (AR-BaUEN)CENRE-147  |t Biotechnology Progress 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84931572761&doi=10.1002%2fbtpr.2067&partnerID=40&md5=279621c91ab3c2cce7b1d96574356814  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/btpr.2067  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_87567938_v31_n3_p791_Santagapita  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_87567938_v31_n3_p791_Santagapita  |y Registro en la Biblioteca Digital 
961 |a paper_87567938_v31_n3_p791_Santagapita  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74627