Linear combinations of generators in multiplicatively invariant spaces

Multiplicatively invariant (MI) spaces are closed subspaces of L2(ω, H) that are invariant under multiplication by (some) functions in L∞(ω); they were first introduced by Bownik and Ross (2014). In this paper we work with MI spaces that are finitely generated. We prove that almost every set of func...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Paternostro, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Instytut Matematyczny 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06949caa a22007217a 4500
001 PAPER-13658
003 AR-BaUEN
005 20230518204403.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84926347964 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Paternostro, V. 
245 1 0 |a Linear combinations of generators in multiplicatively invariant spaces 
260 |b Instytut Matematyczny  |c 2015 
270 1 0 |m Paternostro, V.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Aldroubi, A., Gröchenig, K., Nonuniform sampling and reconstruction in shiftinvariant spaces (2001) SIAM Rev., 43, pp. 585-620 
504 |a Antezana, J., Corach, G., Ruiz, M., Stojanoff, D., Nullspaces and frames (2005) J. Math. Anal. Appl., 309, pp. 709-723 
504 |a Barbieri, D., Hernández, E., Parcet, J., Riesz and frame systems generated by unitary actions of discrete groups (2014) Appl. Comput. Harmon. Anal., , online 
504 |a Barbieri, D., Hernández, E., Paternostro, V., (2014) The Zak Transform and the Structure of Spaces Invariant under the Action of An LCA Group, , preprint 
504 |a Bownik, M., The structure of shift-invariant subspaces of L2(ℝn) (2000) J. Funct. Anal., 177, pp. 282-309 
504 |a Bownik, M., Kaiblinger, N., Minimal generator sets for finitely generated shiftinvariant subspaces of L2(ℝn) (2006) J. Math. Anal. Appl., 313, pp. 342-352 
504 |a Bownik, M., Ross, K.A., (2014) The Structure of Translation-invariant Spaces on Locally Compact Abelian Groups, , preprint 
504 |a Cabrelli, C., Mosquera, C., Paternostro, V., Linear combination of frame generators in systems of translates (2014) J. Math. Anal. Appl., 413, pp. 776-788 
504 |a Cabrelli, C., Paternostro, V., Shift-invariant spaces on LCA groups (2010) J. Funct. Anal., 258, pp. 2034-2059 
504 |a Cabrelli, C., Paternostro, V., Shift-modulation invariant spaces on LCA groups (2012) Studia Math., 211, pp. 1-19 
504 |a De Boor, C., Devore, R.A., Ron, A., Approximation from shift-invariant subspaces of L2(ℝd) (1994) Trans. Amer. Math. Soc., 341, pp. 787-806 
504 |a De Boor, C., Devore, R.A., Ron, A., The structure of finitely generated shiftinvariant spaces in L2(ℝd) (1994) J. Funct. Anal., 119, pp. 37-78 
504 |a Deutsch, F., The angle between subspaces of a Hilbert space, in: Approximation Theory, Wavelets and Applications (1995) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 454, pp. 107-130. , (Maratea 1994), Kluwer, Dordrecht 
504 |a Gröchenig, K., Localization of frames, banach frames, and the invertibility of the frame operator (2004) J. Fourier Anal. Appl., 10, pp. 105-132 
504 |a Havin, V.P., Jöricke, B., The uncertainty principle in harmonic analysis (1995) Commutative Harmonic Analysis III, Encyclopaedia Math. Sci., 72, pp. 177-259. , Springer, Berlin+261-266 
504 |a Helson, H., (1964) Lectures on Invariant Subspaces, , Academic Press New York 
504 |a Hernández, E., Šikic, H., Weiss, G., Wilson, E., Cyclic subspaces for unitary representations of LCA groups; Generalized Zak transform (2010) Colloq. Math., 118, pp. 313-332 
504 |a Hernández, E., Weiss, G., (1996) A First Course on Wavelets, , CRC Press, Boca Raton, FL 
504 |a Kamyabi Gol, R.A., Raisi Tousi, R., A range function approach to shift-invariant spaces on locally compact abelian groups (2010) Int. J. Wavelets Multiresolut. Inf. Process., 8, pp. 49-59 
504 |a Kato, T., (1976) Perturbation Theory for Linear Operators, , Springer New York 
504 |a Mackey, G.W., Induced representations of locally compact groups i (1952) Ann. of Math., 55, pp. 101-139 
504 |a Mallat, S.G., Multiresolution approximations and wavelet orthonormal bases of L2(ℝ) (1989) Trans. Amer. Math. Soc., 315, pp. 69-87 
504 |a Ron, A., Shen, Z., Frames and stable bases for shift-invariant subspaces of L2(ℝd) (1995) Canad. J. Math., 47, pp. 1051-1094 
504 |a Rudin, W., (1962) Fourier Analysis on Groups, , Interscience, New York 
504 |a Srinivasan, T.P., Doubly invariant subspaces (1964) Pacific J. Math., 14, pp. 701-707 
504 |a Sun, Q., Local reconstruction for sampling in shift-invariant spaces (2010) Adv. Comput. Math., 32, pp. 335-352 
504 |a Sun, W., Sampling theorems for multivariate shift invariant subspaces (2005) Sampl. Theory Signal Image Process., 4, pp. 73-98 
504 |a Zhao, P., Zhao, C., Casazza, P.G., Perturbation of regular sampling in shiftinvariant spaces for frames (2006) IEEE Trans. Inform. Theory, 52, pp. 4643-4648 
520 3 |a Multiplicatively invariant (MI) spaces are closed subspaces of L2(ω, H) that are invariant under multiplication by (some) functions in L∞(ω); they were first introduced by Bownik and Ross (2014). In this paper we work with MI spaces that are finitely generated. We prove that almost every set of functions constructed by taking linear combinations of the generators of a finitely generated MI space is a new set of generators for the same space, and we give necessary and sufficient conditions on the linear combinations to preserve frame properties. We then apply our results on MI spaces to systems of translates in the context of locally compact abelian groups and we extend some results previously proven for systems of integer translates in L2(ℝd). © Instytut Matematyczny PAN, 2015.  |l eng 
536 |a Detalles de la financiación: Alexander von Humboldt-Stiftung 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Buenos Aires, 1428, Argentina 
593 |a IMAS-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina 
690 1 0 |a FIBERS 
690 1 0 |a FRAME 
690 1 0 |a GRAMIAN 
690 1 0 |a LCA GROUPS 
690 1 0 |a MULTIPLICATIVELY INVARIANT SPACES 
690 1 0 |a RANGE FUNCTIONS 
690 1 0 |a SHIFT INVARIANT SPACE 
773 0 |d Instytut Matematyczny, 2015  |g v. 226  |h pp. 1-16  |k n. 1  |p Stud. Math.  |x 00393223  |w (AR-BaUEN)CENRE-251  |t Studia Mathematica 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926347964&doi=10.4064%2fsm226-1-1&partnerID=40&md5=456e3fec8a2e07ccc3c057afc5d636eb  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.4064/sm226-1-1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00393223_v226_n1_p1_Paternostro  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00393223_v226_n1_p1_Paternostro  |y Registro en la Biblioteca Digital 
961 |a paper_00393223_v226_n1_p1_Paternostro  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74611