New fluorescence microscopy approaches to explore the influence of sphingolipids on lateral organization of biomembranes: From artificial systems to cellular membranes

Sphingolipids are involved in a wide range of physiological and pathological processes none only as signaling molecules but also as key structural components regulating the lateral organization of cellular membranes. The preferential interaction of these biomolecules with cholesterol support the act...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Traian, M.M.D
Otros Autores: Sánchez, S.A, Levi, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nova Science Publishers, Inc. 2015
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20966caa a22013097a 4500
001 PAPER-13652
003 AR-BaUEN
005 20230518204402.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84958686372 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Traian, M.M.D. 
245 1 0 |a New fluorescence microscopy approaches to explore the influence of sphingolipids on lateral organization of biomembranes: From artificial systems to cellular membranes 
260 |b Nova Science Publishers, Inc.  |c 2015 
270 1 0 |m Sánchez, S.A.; Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Chile; email: susanchez@udec.cl 
506 |2 openaire  |e Política editorial 
504 |a Goni, F.M., The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. (2014) Biochim Biophys Acta, 1838, pp. 1467-1476 
504 |a Singer, S.J., Nicolson, G.L., The fluid mosaic model of the structure of cell membranes. (1972) Science, 175, pp. 720-731 
504 |a Zech, T., Ejsing, C.S., Gaus, K., de Wet, B., Shevchenko, A., Simons, K., Harder, T., Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. (2009) EMBO J, 28, pp. 466-476 
504 |a Miguel, L., Owen, D.M., Lim, C., Liebig, C., Evans, J., Magee, A.I., Jury, E.C., Primary Human CD4+ T Cells Have Diverse Levels of Membrane Lipid Order That Correlate with Their Function. (2011) J Immunol, 186, pp. 3505-3516 
504 |a Klemm, R.W., Ejsing, C.S., Surma, M.A., Kaiser, H.J., Gerl, M.J., Sampaio, J.L., de Robillard, Q., Simons, K., Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. (2009) J Cell Biol, 185, pp. 601-612 
504 |a Schuck, S., Simons, K., Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. (2004) J Cell Sci, 117, pp. 5955-5964 
504 |a Brügger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F.T., Kräusslich, H.G., The HIV lipidome: A raft with an unusual composition. (2006) Proc Natl Acad Sci U S A, 103, pp. 2641-2646 
504 |a Saad, J.S., Miller, J., Tai, J., Kim, A., Ghanam, R.H., Summers, M.F., Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. (2006) Proc Natl Acad Sci U S A, 103, pp. 1136-1136 
504 |a Takeda, M., Leser, G.P., Russell, C.J., Lamb, R.A., Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. (2003) Proceedings of the National Academy of Sciences, 100, pp. 1461-1461 
504 |a Simons, K., Ikonen, E., Functional rafts in cell membranes. (1997) Nature, 387, pp. 569-572 
504 |a Jacobson, K., Mouritsen, O.G., Anderson, R.G., Lipid rafts: at a crossroad between cell biology and physics. (2007) Nat Cell Biol, 9, pp. 7-14 
504 |a Lingwood, D., Kaiser, H.J., Levental, I., Simons, K., Lipid rafts as functional heterogeneity in cell membranes. (2009) Biochem Soc Trans, 37, pp. 955-960 
504 |a Lasic, D.D., The mechanism of vesicle formation. (1988) Biochem. J., 256, p. 1 
504 |a Bangham, A.D., Standish, M.M., Watkins, J.C., Diffusion of univalent ions across the lamellae of swollen phospholipids. (1965) Journal of Molecular Biology, 13, pp. 238-252. , IN226-IN227 
504 |a Goins, B., Freier, E., Lipid phase separations induced by the association of cholera toxin to phospholipid membranes containing ganglioside GM1. (1985) Biochemistry, 24, pp. 1791-1797 
504 |a Keller, M., Kerth, A., Blume, A., Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry. (1997) Biomembranes, 1326, pp. 178-192. , Biochimica et Biophysica Acta (BBA) 
504 |a Bar, L.K., Barenholz, Y., Thompson, T.E., Effect of Sphingomyelin Composition on the Phase Structure of Phosphatidylcholine-Sphingomyelin Bilayers. (1997) Biochemistry, 36, pp. 2507-2516 
504 |a Ge, M., Field, K.A., Aneja, R., Holowka, D., Baird, B., Freed, J.H., Electron Spin Resonance Characterization of Liquid Ordered Phase of Detergent-Resistant Membranes from RBL-2H3 Cells. (1999) Biophysical Journal, 77, pp. 925-933 
504 |a Sanderson, J.M., Resolving the kinetics of lipid, protein and peptide diffusion in membranes. (2012) Mol Membr Biol, 29, pp. 118-143 
504 |a Johnson, S.J., Bayerl, T.M., McDermott, D.C., Adam, G.W., Rennie, A.R., Thomas, R.K., Sackmann, E., Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. (1991) Biophys J, 59, pp. 289-294 
504 |a Wacklin, H.P., Composition and asymmetry in supported membranes formed by vesicle fusion. (2011) Langmuir, 27, pp. 7698-7707 
504 |a Walde, P., Cosentino, K., Engel, H., Stano, P., Giant vesicles: preparations and applications. (2010) Chembiochem, 11, pp. 848-865 
504 |a Bagatolli, L.A., Gratton, E., Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. (1999) Biophysical Journal, 77, pp. 2090-2101 
504 |a Angelova, M.I., Dimitrov, D.S., Liposome electroformation. (1986) Faraday Discussions of the Chemical Society, 81, pp. 303-311 
504 |a Angelova, M.I., Soleau, S., Meleard, P., Faucon, J.F., Bothorel, P., Preparation of giant vesicles by external fields. (1992) Prog. Colloid Polym Sci., 89, pp. 127-131. , Kinetics and application 
504 |a Sánchez, S.A., Tricerri, M.A., Gratton, E., Interaction of High Density Lipoprotein particles with membranes containing cholesterol. (2007) J. Lipid Res., 48, pp. 1689-1700 
504 |a Montes, L.R., Alonso, A., Goni, F.M., Bagatolli, L.A., Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. (2007) Biophys J, 93, pp. 3548-3554 
504 |a Dietrich, C., Bagatolli, L.A., Volovyk, Z.N., Thompson, N.L., Levi, M., Jacobson, K., Gratton, E., Lipid rafts reconstituted in model membranes. (2001) Biophys J, 80, pp. 1417-1428 
504 |a Klymchenko, A.S., Kreder, R., Fluorescent probes for lipid rafts: from model membranes to living cells. (2014) Chem Biol, 21, pp. 97-113 
504 |a Weber, G., Farris, F.J., Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino) naphthalene. (1979) Biochemistry, 18, pp. 3075-3078 
504 |a Rowe, B.A., Neal, S.L., Photokinetic analysis of PRODAN and LAURDAN in large unilamellar vesicles from multivariate frequency-domain fluorescence. (2006) J Phys Chem B, 110, pp. 1502-1502 
504 |a Parasassi, T., Gratton, E., Membrane lipid domains and dynamics as detected by Laurdan fluorescence. (1995) Journal of Fluorescence, 5, pp. 59-69 
504 |a Hirsch-Lerner, D., Barenholz, Y., Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. (1999) Biomembranes, 1461, pp. 47-57. , Biochimica et Biophysica Acta (BBA) 
504 |a Mukherjee, S., Chattopadhyay, A., Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization. (2005) -Biomembranes, 1714, pp. 43-55. , Biochimica et Biophysica Acta (BBA) 
504 |a Harris, F.M., Best, K.B., Bell, J.D., Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. (2002) Biomembranes, 1565, pp. 123-128. , Biochimica et Biophysica Acta (BBA) 
504 |a Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R.M., Gratton, E., Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. (1991) Biophysical Journal, 60, pp. 179-189 
504 |a Yu, W., So, P.T., French, T., Gratton, E., Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. (1996) Biophysical Journal, 70, pp. 626-636 
504 |a Bagatolli, L.A., Gratton, E., Two Photon Fluorescence Microscopy of Coexisting Lipid Domains in Giant Unilamellar Vesicles of Binary Phospholipid Mixtures. (2000) Biophysical Journal, 78, pp. 290-305 
504 |a Klose, C., Ejsing, C.S., García-Sáez, A.J., Kaiser, H.J., Sampaio, J.L., Surma, M.A., Shevchenko, A., Simons, K., Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains. (2010) Journal of Biological Chemistry, 285, pp. 3022-3023 
504 |a Gaus, K., Gratton, E., Kable, E.P.W., Jones, A.S., Gelissen, I., Kritharides, L., Jessup, W., Visualizing lipid structure and raft domains in living cells with two-photon microscopy. (2003) Proceedings of the National Academy of Sciences, 100, pp. 1555-1555 
504 |a Bagatolli, L.A., Sanchez, S.A., Hazlett, T., Gratton, E., Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers. (2003) Methods Enzymol, 360, pp. 481-500 
504 |a Arnulphi, C., Sánchez, S.A., Tricerri, M.A., Gratton, E., Jonas, A., Interaction of human apolipoprotein A-I with model membranes exhibiting lipid domains. (2005) Biophys. J., 89, pp. 285-295 
504 |a Dodes Traian, M.M., Flecha, F.L.G., Levi, V., Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. (2012) Journal of Lipid Research, 53, pp. 609-616 
504 |a Henning, M.F., Sánchez, S.A., Bakás, L., Visualization and analysis of lipopolysaccharide distribution in binary phospholipid bilayers. (2009) Biochem. Biophys. Res. Commun., 383, pp. 22-26 
504 |a Toro, C.S.A.S., Zanocco, A., Lemp, E., Gratton, E., Gunther, G., Solubilization of lipid bilayers by myristyl sucrose ester: effect of cholesterol and phospholipid head group size. (2009) Chem. Phys. Lipids., 157, pp. 104-112 
504 |a Nicolini, C., Baranski, J., Schlummer, S., Palomo, J., Lumbierres-Burgues, M., Kahms, M., Kuhlmann, J., Winter, R., Visualizing association of N-ras in lipid microdomains: influence of domain structure and interfacial adsorption. (2006) J. Am. Chem. Soc., 128, pp. 192-201 
504 |a Jaureguiberry, M.S., Tricerri, M.A., Sanchez, S.A., Garda, H.A., Finarelli, G.S., Gonzalez, M.C., Rimoldi, O.J., Membrane organization and regulation of cellular Cholesterol homeostasis. (2010) J. Membr. Biol., 234, pp. 183-194 
504 |a Sánchez, M.A.T., Gratton, E., Detecting cholesterol changes in lipid bilayers. (2008) Bioworld Europe, 1, pp. 8-11 
504 |a Sanchez, S.A., Gunther, G., Tricerri, M.A., Gratton, E., Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. (2011) J Membr Biol, 24, pp. 1-10 
504 |a Fidorra, M.A.G., Ipsen, J., Hartel, S., Bagatolli, L.A., Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: A quantitative fluorescence microscopy imaging approach. (2009) Biochim. Biophys. Acta., 1788, pp. 2142-2149 
504 |a Husen, P.M.F., Hartel, S., Bagatolli, L.A., Ipsen, J.H., A method for analysis of lipid vesicle domain structure from confocal image data (2012) Eur. Biophys. J., 41, pp. 161-175 
504 |a Husen, P., Arriaga, L.R., Monroy, F., Ipsen, J.H., Bagatolli, L.A., Morphometric Image Analysis of Giant Vesicles: A New Tool for Quantitative Thermodynamics Studies of Phase Separation in Lipid Membranes. (2012) Biophysical Journal, 103, pp. 2304-2310 
504 |a Veatch, S.L., Keller, S.L., A closer look at the canonical "raft mixture' in model membrane studies (2003) Biophysical Journal, 84, p. 725 
504 |a Jin, L., Millard, A.C., Wuskell, J.P., Dong, X., Wu, D., Clark, H.A., Loew, L.M., Characterization and Application of a New Optical Probe for Membrane Lipid Domains. (2006) Biophysical Journal, 90, pp. 2563-2575 
504 |a Kim, H.M., Choo, H.J., Jung, S.Y., Ko, Y.G., Park, W.H., Jeon, S.J., Kim, C.H., Cho, B.R., (2007) A two-photon fluorescent probe for lipid raft imaging, 8, pp. 553-559. , C-Laurdan. Chembiochem 
504 |a Baumgart, T., Hunt, G., Farkas, E.R., Webb, W.W., Feigenson, G.W., Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. (2007) Biochim Biophys Acta, 1768, pp. 2182-2194 
504 |a Brown, D.A., London, E., Structure and function of sphingolipid-and cholesterol-rich membrane rafts. (2000) J Biol Chem, 275, pp. 1722-1722 
504 |a Veatch, S.L., Soubias, O., Keller, S.L., Gawrisch, K., Critical fluctuations in domain-forming lipid mixtures. (2007) Proceedings of the National Academy of Sciences, 104, pp. 1765-1765 
504 |a Sánchez, S.A., Tricerri, M.A., Ossato, G., Gratton, E., Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins. (2010) Biochimica et Biophysica Acta, 1798, pp. 1399-1408 
504 |a Sanchez, S.A., Bagatolli, L.A., Gratton, E., Hazlett, T.L., A Two-Photon View of an Enzyme at Work: Crotalus atrox Venom PLA2 Interaction with Single-Lipid and Mixed-Lipid Giant Unilamellar Vesicles (2002) Biophys. J., 82, pp. 2232-2243 
504 |a Jaureguiberry, M.S.T.M., Sanchez, S.A., Finarelli, G.S., Montanaro, M.A., Prieto, E.D., Rimoldi, O.J., Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases. (2014) Acta Biochim Biophys Sin, 46, pp. 273-282. , Shanghai 
504 |a Navarro-Lérida, I.S.P.S., Calvo, M., Rentero, C., Zheng, Y., Enrich, C., Del Pozo, M.A., A palmitoylation switch mechanism regulates Rac1 function and membrane organization (2012) EMBO J., 31, pp. 534-551 
504 |a Wayne, R., Light and Video microscopy. (2009) Elsevier Inc, pp. 35-65. , Amsterdam 
504 |a Celli, A., Beretta, S., Gratton, E., Phase fluctuations on the micron-submicron scale in GUVs composed of a binary lipid mixture. (2008) Biophys. J., 94, pp. 104-116 
504 |a Celli, A., Gratton, E., Dynamics of lipid domain formation: fluctuation analysis. (2010) Biochim Biophys Acta., 1798, pp. 1368-1376 
504 |a Ruan, Q., Cheng, M.A., Levi, M., Gratton, E., Mantulin, W.W., Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). (2004) Biophys J, 87, pp. 1260-1267 
504 |a Dertinger, T., Pacheco, V.I., von der Hocht, R., Hartmann, I., Gregor, J., Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. (2007) Chemphyschem, 8, pp. 433-443 
504 |a Burkhardt, M., Schwille, P., Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy. (2006) Opt Express, 14, pp. 5013-5020 
504 |a Bacia, K., Kim, S.A., Schwille, P., Fluorescence crosscorrelation spectroscopy in living cells. (2006) Nat Methods, 3, pp. 83-89 
504 |a Hebert, B., Costantino, S., Wiseman, P.W., Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. (2005) Biophys J, 88, pp. 3601-3614 
504 |a Digman, M.A., Brown, C.M., Sengupta, P., Wiseman, P.W., Horwitz, A.R., Gratton, E., Measuring fast dynamics in solutions and cells with a laser scanning microscope. (2005) Biophys J, 89, pp. 1317-1327 
504 |a Hinde, E., Cardarelli, F., Digman, M.A., Gratton, E., In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNAdependent molecular flow. (2010) Proc Natl Acad Sci U S A, 107, pp. 1656-1656 
504 |a Elson, E.L., Fluorescence correlation spectroscopy: past, present, future. (2011) Biophys J, 101, pp. 2855-2870 
504 |a Chen, Y., Muller, J.D., Ruan, Q., Gratton, E., Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. (2002) Biophys J, 82, pp. 133-144 
504 |a Chen, Y., Muller, J.D., So, P.T., Gratton, E., The photon counting histogram in fluorescence fluctuation spectroscopy. (1999) Biophys J, 77, pp. 553-567 
504 |a Sánchez, S.A., Tricerri, M.A., Gratton, E., Laurdan generalized polarization fluctuations measures membrane packing microheterogeneity in vivo. (2012) Proc. Natl. Acad. Sci. USA., 109 (19), pp. 7314-7319. , 7314-9, 2012, 109 
504 |a Smith, S.K., Farnbach, A.R., Harris, F.M., Hawes, A.C., Jackson, L.R., Judd, A.M., Vest, R.S., Bell, J.D., Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes. (2001) J Biol Chem, 276, pp. 2273-2274 
504 |a Jaureguiberry, M.S., Tricerri, M.A., Sanchez, S.A., Garda, H.A., Finarelli, G.S., Gonzalez, M.C., Rimoldi, O.J., Membrane organization and regulation of cellular cholesterol homeostasis. (2010) J Membr Biol, 234, pp. 183-194 
504 |a Golfetto, O., Hinde, E., Gratton, E., The Laurdan spectral phasor method to explore membrane micro-heterogeneity and lipid domains in live cells. (2015) Methods Mol Biol, 1232, pp. 273-290 
504 |a Ottavia Golfetto, E.H., Gratton, E., Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes. (2013) Biophysical J., 104, pp. 1238-1247 
504 |a Gabriele Bonaventura, M.L.B., Golfetto, O., Nourse, J.L., Flanagan, L.A., Gratton, E., Laurdan Monitors Different Lipids Content in Eukaryotic. (2014) Cell Biochem Biophys, 70, pp. 9982-9988. , Membrane During Embryonic Neural Development 
504 |a Owen, D.M., Williamson, D.J., Magenau, A., Gaus, K., Subresolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. (2012) Nat Commun, 3, p. 1256 
504 |a Owen, D.M., Gaus, K., Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy. (2013) Front Plant Sci, 4, p. 503 
504 |a Elson, E.L., Brief introduction to fluorescence correlation spectroscopy. (2013) Methods Enzymol, 518, pp. 11-41 
520 3 |a Sphingolipids are involved in a wide range of physiological and pathological processes none only as signaling molecules but also as key structural components regulating the lateral organization of cellular membranes. The preferential interaction of these biomolecules with cholesterol support the actual theory related with membrane heterogeneity in vivo, the raft theory. Rafts are believed to be highlydynamic and small domains enriched in sphingolipids, cholesterol and certain proteins present in the membrane of cells. The idea of these domains compartmentalizing cellular processes is a central hypothesis in biomedical research from immunology, virology, neurobiology to cancer. The use of microscopy to study lateral heterogeneity in biological membranes was developed during the nineties with the use of artificial models systems such as giant unillamelar vesicles and supported-lipid bilayers. The combination of confocal and two-photon microscopy techniques with fluorescent and solvatochromic probes like Laurdan enabled the acquisition of spatially-resolved information about the fluidity and/or order of artificial bilayers showing phase segregation. The development of new techniques combining Laurdan imaging with fluorescence fluctuation spectroscopy allowed the detection of highlypacked microdomains in natural cell membranes. In this article we review these exciting new approaches that open a window to further characterize these sphingolipid-enriched domains in cell membranes during both physiological and pathological processes. © 2015 by Nova Science Publishers, Inc. All rights reserved.  |l eng 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina 
593 |a Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile 
700 1 |a Sánchez, S.A. 
700 1 |a Levi, V. 
773 0 |d Nova Science Publishers, Inc., 2015  |h pp. 1-19  |p Sphingomyelin and Ceramides: Occur., Biosynth. and Role in Dis.  |z 9781634825856  |z 9781634825535  |t Sphingomyelin and Ceramides: Occurrence, Biosynthesis and Role in Disease 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958686372&partnerID=40&md5=57b92ff33ca8be54e83c1731c16613f3  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97816348_v_n_p1_Traian  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p1_Traian  |y Registro en la Biblioteca Digital 
961 |a paper_97816348_v_n_p1_Traian  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 74605