Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants

Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Iriel, A.
Otros Autores: Dundas, G., Fernández Cirelli, A., Lagorio, M.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2015
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20490caa a22022457a 4500
001 PAPER-13648
003 AR-BaUEN
005 20230518204402.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84919776343 
024 7 |2 cas  |a arsenic, 7440-38-2; catalase, 9001-05-2; chlorophyll, 1406-65-1, 15611-43-5; glutathione transferase, 50812-37-8; phytochelatin, 98726-08-0; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; Arsenic; Chlorophyll; Photosystem II Protein Complex; Water Pollutants, Chemical 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CMSHA 
100 1 |a Iriel, A. 
245 1 0 |a Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants 
260 |b Elsevier Ltd  |c 2015 
270 1 0 |m Lagorio, M.G.; INQUIMAE / Dpto. de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 1er piso, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Alvarado, S., Guédez, M., Lué-Merú, M.P., Graterol, N., Anzalone, A., Arroyo, C.J., Gyula, Z., Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor) (2008) Bioresour. Technol., 99, pp. 8436-8440 
504 |a (1995) Standard Methods for the Examination of Water and Wastewater, , 19th ed. American Public Health Association, Washington 
504 |a Asada, K., Production and scavenging of reactive oxygen species in chloroplasts and their functions (2006) Plant Physiol., 141, pp. 391-396 
504 |a Bundschuh, J., Litter, M.I., Parvez, F., Román-Ross, G., Nicolli, H.B., Jean, J., Liu, C., Toujaguez, R., One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries (2012) Sci. Total Environ., 429, pp. 2-35 
504 |a Cerovic, Z.G., Ounis, A., Cartelat, A., Latouche, G., Goulas, S., Meyer, Y., Moya, I., The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves (2002) Plant Cell Environ., 25, pp. 1663-1676 
504 |a Chen, S., Yin, C., Strasser, R.J., Govindjee, Y., Govindjee, Y.C., Qiang, S., Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana (2012) Plant Physiol. Biochem., 52, pp. 38-51 
504 |a Cordon, G., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) Photochem. Photobiol. Sci., 5, pp. 735-740 
504 |a Dhankher, O.P., Li, Y., Rosen, B.P., Shi, J., Salt, D., Senecoff, J.F., Nupur, A., Meagher, R.B., Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression (2002) Nat. Biotechnol., 20, pp. 1140-1145 
504 |a Durrieu, C., Tran-Minha, C., Chovelona, J.M., Bartheta, L., Chouteaua, C., Védrinea, C., Algal biosensors for aquatic ecosystems monitoring (2006) Eur. Phys. J. Appl. Phys., 36, pp. 205-209 
504 |a Emengini, E.J., Blackburn, G.A., Theobald, J.C., Early detection of oil-induced stress in crops using spectral and thermal responses (2013) J. Appl. Remote Sens., 7, pp. 1-14 
504 |a Ferguson, J.F., Gavis, J., A review of the arsenic cycle in natural waters (1972) Water Res., 6, pp. 1259-1274 
504 |a Hartley-Whitaker, J., Ainsworth, G., Meharg, A.A., Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with different sensitivity (2001) Plant Cell Environ., 24, pp. 713-722 
504 |a Hatfield, J., Gitelson, A., Schepers, J., Walthall, C., Application of spectral remote sensing for agronomic decisions (2008) Agron. J., 100, pp. S117-S131 
504 |a Iriel, A., Lagorio, M.G., Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of Anthocyanins in petals using a reflectance-based method (2009) Photochem. Photobiol. Sci., 8, pp. 337-344 
504 |a Iriel, A., Lagorio, M.G., Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling (2010) Photochem. Photobiol. Sci., 7, pp. 342-348 
504 |a Iriel, A., Mendes Novo, J., Cordon, G.B., Lagorio, M.G., Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited-implications in photosystems emission and ecotoxicity assessment (2014) Photochem. Photobiol., 90, pp. 107-112 
504 |a Lagorio, M.G., Chlorophyll fluorescence emission spectra in photosynthetic organisms (2011) Chlorophyll: Structure, Production and Medicinal Uses, pp. 115-150. , Nova Science Publishers, New York, H. Le, E. Salcedo (Eds.) 
504 |a Lichtenthaler, H.K., Buschmann, C., Knapp, M., How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer (2005) Photosynthetica, 43, pp. 379-393 
504 |a Litter, M.I., Alarcón-Herrera, M.T., Arenas, M.J., Armienta, M.A., Avilés, M., Cáceres, R.E., Cipriani, E.N., Pérez-Carrera, A., Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America (2012) Sci. Total Environ., 429, pp. 107-122 
504 |a Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kennelley, E.D., A fern that hyperaccumulates arsenic (2001) Nature, 409, p. 679 
504 |a Mascher, R., Lippmann, B., Holzinger, S., Bergmann, H., Tamaki, S., Frankenberger, W.T., Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants (2002) Plant Sci., 163, pp. 961-969 
504 |a Maxwell, K., Johnson, G., Chlorophyll fluorescence-a practical guide (2000) J. Exp. Bot., 51, pp. 659-668 
504 |a McClintock, T.R., Chen, Y., Bundschuh, J., Oliver, J.T., Navoni, J., Olmos, V., Villaamil Lepori, E., Parvez, F., Arsenic exposure in Latin America: biomarkers, risk assessments and related health effects (2012) Sci. Total Environ., 429, pp. 76-91 
504 |a Meharg, A.A., Jardine, L., Arsenite transport into paddy rice (Oryza sativa) roots (2003) New Phytol., 157, pp. 39-44 
504 |a Mendes Novo, J., Iriel, A., Lagorio, M.G., Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa) (2012) Photochem. Photobiol. Sci., 11, pp. 724-730 
504 |a Mikryakova, T.F., Accumulation of heavy metals by macrophytes at different levels of pollution of aquatic medium (2002) Water Resour., 29, pp. 230-232 
504 |a Milivojević, D.B., Nikolić, B.R., Drinić, G., Effects of arsenic on phosphorus content in different organs and chlorophyll fluorescence in primary leaves of soybean (2006) Biol. Plant., 50, pp. 149-151 
504 |a Miretzky, P., Saralegui, A., Fernández Cirelli, A., Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina) (2004) Chemosphere, 57, pp. 997-1005 
504 |a Miretzky, P., Saralegui, A., Fernández Cirelli, A., Simultaneous heavy metal removal mechanism by dead macrophytes (2006) Chemosphere, 62, pp. 247-254 
504 |a Mishra, V., Upadhyay, A., Pathak, V., Tripathi, B., Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes (2008) Water, Air, Soil Pollut., 192, pp. 303-314 
504 |a Misyura, M., Colasanti, J., Rothstein, S.J., Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions (2013) J. Exp. Bot., 64, pp. 229-240 
504 |a Miteva, E., Merakchiyska, M., Response of chloroplasts and photosynthetic mechanism of bean plants to excess arsenic in soil (2002) Bulg. J. Agric. Sci., 8, pp. 151-156 
504 |a Mylona, P.V., Polidoros, A.N., Scandalios, J.G., Modulation of antioxidant responses by arsenic in maize (1998) Free Radical Biol. Med., 25, pp. 576-585 
504 |a Nicolli, H.B., Suriano, J.M., Gómez Peral, M.A., Ferpozzi, O.A., Baleani, O.A., Groundwater contamination with arsenic and other trace metals in an area of the Pampa, Province of Cordoba, Argentina (1989) Environ. Geol. Water Sci., 14, pp. 3-16 
504 |a Pfündel, E., Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence (1998) Photosynth. Res., 56, pp. 185-195 
504 |a Pisani, T., Munzi, S., Paoli, L., Bačkor, M., Loppi, S., Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr. (2011) Chemosphere, 82, pp. 963-969 
504 |a Procházková, D., Haisel, D., Wilhelmová, N., Content of carotenoids during ageing and senescence of tobacco leaves with genetically modulated life-span (2009) Photosynthetica, 47, pp. 409-414 
504 |a Rahman, M.A., Hasegawa, H., Aquatic arsenic: phytoremediation using floating macrophytes (2011) Chemosphere, 83, pp. 633-646 
504 |a Rahman, M.A., Hasegawa, H., Rahman, M.M., Islam, M.N., Miah, M.A.M., Tasmen, A., Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh (2007) Chemosphere, 67, pp. 1072-1079 
504 |a Rahman, M.A., Hasegawa, H., Ueda, K., Maki, T., Rahman, M.M., Influence of phosphate and iron ions in selective uptake of arsenic species by water fern (Salvinia natans L.) (2008) Chem. Eng. J., 145, pp. 179-184 
504 |a Rahman Shaibur, M., Kawai, S., Effect of arsenic on visible symptom and arsenic concentration in hydroponic Japanese mustard spinach (2009) Environ. Exp. Bot., 67, pp. 65-70 
504 |a Ramos, M.E., Lagorio, M.G., True fluorescence spectra of leaves (2004) Photochem. Photobiol. Sci., 3, pp. 1063-1066 
504 |a Robinson, B., Marchetti, M., Moni, C., Schroeter, L., van den Dijssel, C., Milne, G., Bolan, N., Mahimairaja, S., Arsenic accumulation by aquatic and terrestrial plants (2005) Managing Arsenic in the Environment: From Soil to Human Health, pp. 235-247. , CSIRO, Collingwood, Victoria, R. Naidu, E. Smith, G. Owens, P. Bhattacharya, P. Nadebaum (Eds.) 
504 |a Rosso, J.J., Puntoriero, M.L., Troncoso, J.J., Volpedo, A.V., Fernández Cirelli, A., Occurrence of fluoride in arsenic-rich surface waters: a case study in the Pampa Plain, Argentina (2011) Bull. Environ. Contam. Toxicol., 87, pp. 409-413 
504 |a Sasmaz, A., Obek, E., The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents (2009) Ecol. Eng., 35, pp. 1564-1567 
504 |a Sassolas, A., Prieto-Simón, B., Marty, J.L., Biosensors for pesticide detection: new trends (2012) Am. J. Anal. Chem., pp. 210-232 
504 |a Schreiber, U., Bilger, W., Neubauer, C., Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis (1995) Ecophysiology of Photosynthesis, pp. 49-70. , Springer, Berlin Heidelberg, Berlin, E. Schulze, M.M. Caldwell (Eds.) 
504 |a Sinha, D., Dey, S., Bhattacharya, R.K., Roy, M., In vitro mitigation of arsenic toxicity by tea polyphenols in human lymphocytes (2007) J. Environ. Pathol. Toxicol. Oncol., 26, pp. 207-220 
504 |a Slonecker, T., Haack, B., Price, S., Spectroscopic analysis of arsenic uptake in Pteris (2009) Remote Sens., 1, pp. 644-675 
504 |a Slonecker, T., Haack, B., Price, S., Spectroscopic analysis of arsenic uptake in Pteris Ferns (2009) Remote Sens., 1, pp. 644-675 
504 |a Smedley, P.L., Kinniburgh, D.G., A review of the source, behaviour and distribution, of arsenic in natural waters (2002) Appl. Geochem., 17, pp. 517-568 
504 |a Smedley, P.L., Kinniburgh, D.G., Macdonald, D.M.J., Nicolli, H.B., Barros, A.J., Tullio, J.O., Pearce, J.M., Alonso, M.S., Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina (2005) Appl. Geochem., 20, pp. 989-1016 
504 |a Stoeva, N., Bineva, T., Oxidative changes and photosynthesis in oat plants grown in as-contaminated soil (2003) Bulg. J. Plant Physiol., 29, pp. 87-95 
504 |a Stoeva, N., Berova, M., Zlatev, Z., Physiological response to maize to arsenic contamination (2003) Biol. Plant., 47, pp. 449-452 
504 |a Stoeva, N., Berova, M., Zlatev, Z., Effect of arsenic on some physiological parameters in bean plants (2005) Biol. Plant., 49, pp. 293-296 
504 |a Tamaki, S., Frankenberger, W.T., Environmental biochemistry of arsenic (1992) Rev. Environ. Contam. Toxicol., 124, pp. 79-110 
504 |a Védrine, C., Leclerc, J.C., Durrieu, C., Tran-Minh, C., Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides (2003) Biosens. Bioelectron., 18, pp. 457-463 
504 |a Wang, W., Ma, L.Q., Rathinasabapathi, B., Cai, Y., Guo Lio, Y., Ming Zeng, G., Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata (2011) Environ. Sci. Technol., 45, pp. 9719-9725 
504 |a Yaryura, P., Cordon, G., Leon, M., Kerber, N., Pucheu, N., Rubio, G., García, A., Lagorio, M.G., Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.) (2009) J. Agron. Crop Sci., 195, pp. 186-196 
504 |a Zhang, X., Lin, A.-J., Zhao, F.-J., Xu, G.-Z., Duan, G.-L., Zhu, Y.-G., Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by Azolla caroliniana and Azolla filiculoides (2008) Environ. Pollut., 156, pp. 1149-1155 
504 |a Zhao, F.J., Ma, J.F., Meharg, A.A., McGrath, S.P., Arsenic uptake and metabolism in plants (2009) New Phytol., 181, pp. 777-794 
520 3 |a Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media. © 2014 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 20020100100814 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2012-0759, PICT 2012-2357 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors are grateful to the University of Buenos Aires (UBACyT 20020100100814 ), to the Consejo Nacional de Investigaciones Científicas y Técnicas and to the Agencia Nacional de Promoción Científica y Tecnológica ( PICT 2012-2357 , and PICT 2012-0759 ) for financial support. The authors would also like to thank to the International Association for the Exchange of Students for Technical Experience for the assistance of Gavin Dundas. 
593 |a Instituto de Investigaciones en Producción Animal, INPA(UBA-CONICET) / Centro de Estudios Transdisciplinarios del Agua (CETA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires, C1427CWO, Argentina 
593 |a INQUIMAE / Dpto. de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 1er piso, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a ARSENIC 
690 1 0 |a CHLOROPHYLL FLUORESCENCE 
690 1 0 |a ENVIRONMENT 
690 1 0 |a PLANT MONITORING 
690 1 0 |a REFLECTANCE 
690 1 0 |a ARSENIC 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a FLUORESCENCE 
690 1 0 |a GROUNDWATER 
690 1 0 |a GROUNDWATER POLLUTION 
690 1 0 |a HEALTH RISKS 
690 1 0 |a REFLECTION 
690 1 0 |a CHLOROPHYLL FLUORESCENCE 
690 1 0 |a ENVIRONMENT 
690 1 0 |a NON-DESTRUCTIVE MONITORING 
690 1 0 |a PHOTOPHYSICAL PROPERTIES 
690 1 0 |a PHOTOSYNTHETIC PARAMETERS 
690 1 0 |a PLANT MONITORING 
690 1 0 |a PULSE AMPLITUDE MODULATED FLUOROMETERS 
690 1 0 |a REFLECTANCE PROPERTIES 
690 1 0 |a PLANTS (BOTANY) 
690 1 0 |a ANTHOCYANIN 
690 1 0 |a ARSENIC 
690 1 0 |a CAROTENOID 
690 1 0 |a CATALASE 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a GLUTATHIONE TRANSFERASE 
690 1 0 |a OXYGEN DERIVATIVE 
690 1 0 |a PHYTOCHELATIN 
690 1 0 |a REACTIVE OXYGEN METABOLITE 
690 1 0 |a SUPEROXIDE DISMUTASE 
690 1 0 |a ARSENIC 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a PHOTOSYSTEM II 
690 1 0 |a WATER POLLUTANT 
690 1 0 |a AQUATIC PLANT 
690 1 0 |a ARSENIC 
690 1 0 |a BIOINDICATOR 
690 1 0 |a CHLOROPHYLL A 
690 1 0 |a CONTAMINATED LAND 
690 1 0 |a FLUORESCENCE 
690 1 0 |a GROUNDWATER POLLUTION 
690 1 0 |a POLLUTION MONITORING 
690 1 0 |a REFLECTANCE 
690 1 0 |a SPECTRAL ANALYSIS 
690 1 0 |a TOXICITY 
690 1 0 |a AMPLITUDE MODULATION 
690 1 0 |a AQUATIC SPECIES 
690 1 0 |a ARTICLE 
690 1 0 |a AZOLLA FILICULOIDES 
690 1 0 |a CHLOROPHYLL FLUORESCENCE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a EICHHORNIA CRASSIPES 
690 1 0 |a FLUOROMETRY 
690 1 0 |a LEMNA MINOR 
690 1 0 |a LIGHT ABSORPTION 
690 1 0 |a MACROPHYTE 
690 1 0 |a NONHUMAN 
690 1 0 |a PHOTOCHEMISTRY 
690 1 0 |a PHOTOSYNTHETIC PHOTON FLUX DENSITY 
690 1 0 |a PHOTOSYNTHETICALLY ACTIVE RADIATION 
690 1 0 |a PHYSICAL CHEMISTRY 
690 1 0 |a PHYTOREMEDIATION 
690 1 0 |a PLANT LEAF 
690 1 0 |a REFLECTOMETRY 
690 1 0 |a VALLISNERIA GIGANTEA 
690 1 0 |a ARACEAE 
690 1 0 |a CHEMISTRY 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a ENVIRONMENTAL MONITORING 
690 1 0 |a FERN 
690 1 0 |a FLUORESCENCE 
690 1 0 |a HYDROCHARITACEAE 
690 1 0 |a METABOLISM 
690 1 0 |a PHOTOSYSTEM II 
690 1 0 |a SPECIES DIFFERENCE 
690 1 0 |a TOXICITY 
690 1 0 |a WATER POLLUTANT 
690 1 0 |a AZOLLA FILICULOIDES 
690 1 0 |a LEMNA MINOR 
690 1 0 |a VALLISNERIA GIGANTEA 
690 1 0 |a ARACEAE 
690 1 0 |a ARSENIC 
690 1 0 |a CHLOROPHYLL 
690 1 0 |a ENVIRONMENTAL MONITORING 
690 1 0 |a FERNS 
690 1 0 |a FLUORESCENCE 
690 1 0 |a HYDROCHARITACEAE 
690 1 0 |a PHOTOSYSTEM II PROTEIN COMPLEX 
690 1 0 |a PLANT LEAVES 
690 1 0 |a SPECIES SPECIFICITY 
690 1 0 |a WATER POLLUTANTS, CHEMICAL 
651 4 |a LATIN AMERICA 
700 1 |a Dundas, G. 
700 1 |a Fernández Cirelli, A. 
700 1 |a Lagorio, M.G. 
773 0 |d Elsevier Ltd, 2015  |g v. 119  |h pp. 697-703  |p Chemosphere  |x 00456535  |w (AR-BaUEN)CENRE-4170  |t Chemosphere 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919776343&doi=10.1016%2fj.chemosphere.2014.07.066&partnerID=40&md5=5d91bce48bd74f449f8de5b55472c9d3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.chemosphere.2014.07.066  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00456535_v119_n_p697_Iriel  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00456535_v119_n_p697_Iriel  |y Registro en la Biblioteca Digital 
961 |a paper_00456535_v119_n_p697_Iriel  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74601