Inorganic hydrogels for whole-culture encapsulation
Sol-gel encapsulation of living cells within inorganic hydrogels, mainly silica, is a promising technology for the design of biosensors. These host-guest functional materials maintain specific biologic functions of their guest while the properties of the host can be tuned to fulfill the requirements...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Nova Science Publishers, Inc.
2015
|
| Acceso en línea: | Registro en Scopus Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 12913caa a22011657a 4500 | ||
|---|---|---|---|
| 001 | PAPER-13643 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204402.0 | ||
| 008 | 190411s2015 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84955644220 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Perullini, M. | |
| 245 | 1 | 0 | |a Inorganic hydrogels for whole-culture encapsulation |
| 260 | |b Nova Science Publishers, Inc. |c 2015 | ||
| 270 | 1 | 0 | |m Perullini, M.; INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad UniversitariaArgentina |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Blondeau, M., Coradin, T., (2012) J. Mater. Chem, 22, pp. 22335-22343 | ||
| 504 | |a Depagne, C., Roux, C., Coradin, T., Analytical Bioanalytical Chemistry, 400 (965) | ||
| 504 | |a Coradin, T., Nassif, N., (2003) J. Applied Microbiology and Biotechnology, 61 (429) | ||
| 504 | |a Kataoka, K., Nagao, Y., Nukui, T., Akiyama, I., Tsuru, K., Hayakawa, S., Osaka, A., Huh, N.H., Biomaterials, 26 (2509) | ||
| 504 | |a Eleftheriou, N.M., Xin Ge, J., Kolesnik, S.B., Falconer, R.J., Harris, C., Khursigara, E.D., Brown, J.D., Brennan, Brennan, Entrapment of Living Bacterial Cells in Low-Concentration Silica Materials Preserves Cell Division and Promoter Regulation (2013) Chem. Mater, 25 (23), pp. 4798-4805 | ||
| 504 | |a Perullini, M., Jobbagy, M., Soller-Illia, G.J.A.A., Bilmes, S.A., (2005) Chem. Mater., 17, pp. 3806-3808 | ||
| 504 | |a Ferro, Y., Perullini, M., Jobbagy, M., Bilmes, S.A., Durrieu, C., Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels Sensors, 12 (12), pp. 16879-16891 | ||
| 504 | |a Perullini, M., Rivero, M.M., Jobbagy, M., Mentaberry, A., Bilmes, S.A., (2007) J. Biotechnol, 127 (3), pp. 542-548 | ||
| 504 | |a Perullini, M., Jobbagy, M., Mouso, N., Forchiassin, F., Bilmes, S.A., Silica- alginate-fungi biocomposites for remediation of polluted water (2010), 20 (31), pp. 6479-6483; Jen, C., Wake, M.C., Mikos, G., (1996) Biotechnol. Bioeng, 50, pp. 357-364 | ||
| 504 | |a Rivest, C., Morrison, D., Ni, B., Rubin, J., Yadav, V., Mahdavi, A., Karp, J.M., Khademhosseini, A., (2007), 2; Hunt, N., Grover, L.M., (2010) Biotechnol. Lett, 32, pp. 733-742 | ||
| 504 | |a Nicodemus, G., Bryant, S.J., (2008) Tissue Eng. Part B. Rev, 14, pp. 149-165 | ||
| 504 | |a Sglavo, V., Carturan, G., Monte, D.R., Muraca, M., (1999) J. Mater. Sci, 34, pp. 3587-3590 | ||
| 504 | |a Muraca, M., Vilei, M., Zanusso, G., Ferraresso, C., Boninsegna, S., Monte, D.R., Carraro, P., Carturan, G., (2002) Artif. Organs, 26, pp. 664-669 | ||
| 504 | |a Armanini, L., Carturan, G., Boninsegna, S., Monte, D.R., Muraca, M., (1999) J. Mater. Chem, 9, pp. 3057-3060 | ||
| 504 | |a Eglin, D., Mosser, G., Giraud-Guille, M., Livage, J., Coradin, T., (2005) Soft Matter 1, (129) | ||
| 504 | |a Ren, L., Tsuru, K., Hayakawa, S., Osaka, A., (2001) J. Sol-Gel Sci. Technol, 21, pp. 115-121 | ||
| 504 | |a Coradin, T., Livage, J., (2005) Mater. Sci. Eng. C, 25, pp. 201-205 | ||
| 504 | |a Benmouhoub, N., Simmonet, N., Agoudjil, N., Coradin, T., (2008) Green Chem 10, (957) | ||
| 504 | |a Augst, A., Kong, H., Mooney, D., (2006) Macromol. Biosci, 6, pp. 623-633 | ||
| 504 | |a Mongar, I.L., Wassermann, A., (1952) J. Chem. Soc, pp. 492-497 | ||
| 504 | |a Karakasyan, C., Legros, M., Lack, S., Brunel, F., Maingault, P., Ducouret, G., Polyme, P., 2966-2975 (2010); Ouwerx, C., Velings, N., Mestdagh, M., Axelos, M., (1998) Polym. Gels Networks, 6, pp. 393-408 | ||
| 504 | |a Hickman, G., Rai, A., Boocock, D., Rees, R., Perry, C., (2012) J. Mater. Chem, 22, p. 12141 | ||
| 504 | |a Fang, Y., Al-Assaf, S., Phillips, G., Nishinari, K., Funami, T., Williams, P., Li, L., (2007) J. Phys. Chem. B, 111, pp. 2456-2462 | ||
| 504 | |a Donati, I., Holtan, S., Morch, A.Y., Borgogna, M., Dentini, M., Braek, S.G., (2005) Biomacromolecules, 6, pp. 1031-1040 | ||
| 504 | |a Perullini, M., PhD (2009), (145). , Thesis, University of Buenos Aires; Braschler, T., Valero, A., Colella, L., Pataky, K., Brugger, J., Renaud, P., (2011) Anal. Chem 83, pp. 2234-2242 | ||
| 504 | |a Bienaimé, C., Barbotin, J., Nava-Saucedo, J.E., (2003) J. Biomed. Mater. Res. A, 67, pp. 376-388 | ||
| 504 | |a Sugiura, S., Oda, T., Aoyagi, Y., Matsuo, R., Enomoto, T., Matsumoto, K., Nakamura, T., Nakajima, M., (2007) Biomed. Microdevices, 9, pp. 91-99 | ||
| 504 | |a Lian, M., Collier, C., Doktycz, M., Retterer, S.T., (2012) Biomicrofluidics 6, p. 44108 | ||
| 504 | |a Haeberle, S., Naegele, L., Burger, R., Stetten, V.F., Zengerle, R., Ducrée, J., (2008) J. Microencapsul, 25, pp. 267-274 | ||
| 504 | |a Delaney, J., Liberski, A., Schubert, U., (2010) Soft Matter, 6, pp. 866-869 | ||
| 504 | |a Liu, L., Kost, J., Yan, F., Spiro, R.C., (2012) Polymers (Basel), 4, pp. 997-1011 | ||
| 504 | |a Mongar, I., Wassermann, A., (1952) J. Chem. Soc, pp. 492-497 | ||
| 504 | |a Klein, J., Stock, J., Vorlop, K., (1983) Eur. J. Appl. Microbiol, pp. 86-91 | ||
| 504 | |a Scherer, P., Kluge, M., Klein, J., Sahm, H., (1981) Biotechnol. Bioeng, 23, pp. 1057-1065 | ||
| 504 | |a Fukushima, Y., Okamura, K., Imai, K., Motai, H., (1988) Biotechnol. Bioeng, 32, pp. 584-594 | ||
| 504 | |a Sakai, S., Ono, T., Ijima, H., Kawakami, K., (2001) Biomaterials, 22, pp. 2827-2834 | ||
| 504 | |a Sakai, S., Ono, T., Ijima, H., Kawakami, K., (2002) Biomaterials, 23, pp. 4177-4183 | ||
| 504 | |a Coradin, T., Mercey, E., Lisnard, L., Livage, J., (2001) Chem. Commun. (Camb), pp. 2496-2497 | ||
| 504 | |a Rajaonarivony, M., Vauthier, C., Couarraze, G., Puisieux, F., Couvreur, P., (1993) J. Pharm. Sci, 82, pp. 912-917 | ||
| 504 | |a Boissière, M., Meadows, P., Brayner, R., Hélary, C., Livage, J., Coradin, T., (2006) J. Mater. Chem, 16 (1178) | ||
| 504 | |a Coradin, T., Mercey, E., Lisnard, L., Livage, J., (2003) Chem. Commun. (Camb), 61, pp. 429-434 | ||
| 504 | |a Coradin, T., Nassif, N., Livage, J., (2003) Appl. Microbiol. Biotechnol, 61, pp. 429-434 | ||
| 504 | |a Carturan, G., Toso, D.R., Boninsegna, S., Monte, D.R., (2004) J. Mater. Chem, 14 (2087) | ||
| 504 | |a Boninsegna, S., Bosetti, P., Carturan, G., Dellagiacoma, G., Monte, D.R., Rossi, M., (2003) J. Biotechnol, 100, pp. 277-286 | ||
| 504 | |a Boninsegna, S., Toso, D.R., Monte, D.R., Carturan, G., (2003) J. Sol-Gel Sci. Technol, 26, pp. 1151-1157 | ||
| 504 | |a Magagna, C., Rossi, M., Bellavite, P., Carturan, G., Boninsegna, S., Monte, D.R., Toso, D.R., (2002) Advances in Islet Cell Biology, pp. 3-6 | ||
| 504 | |a Livage, J., Coradin, T., Living cells in oxide glasses (2006) Reviews in Mineralogy and Geochemistry, 64 (1), pp. 315-332 | ||
| 504 | |a Soltmann, U., Böttcher, H., Utilization of sol-gel ceramics for the immobilization of living microorganisms (2008) J Sol-Gel Sci. Technol, 48, pp. 66-72 | ||
| 504 | |a Blondeau, M., Coradin, T., Living materials from sol-gel chemistry: current challenges and perspectives (2012) J. Mater. Chem, 22, p. 22335 | ||
| 504 | |a Kuncova, G., Podrazky, O., Ripp, S., Trögl, J., Sayler, G., Demnerova, K., Vankova, R. Monitoring of the viability of cells immobilized by sol-gel process (2004) J. Sol-Gel Sci. Technol, 31, pp. 1-8 | ||
| 504 | |a Moreno-Garrido, I., Microalgae immobilization: Current techniques and uses (2008) Bioresour Technol, 99, pp. 3949-3964 | ||
| 504 | |a Ionescu, R., Abu-Rabeah, K., Cosnier, S., Durrieu, C., Chovelon, J., Marks, R., Amperometric algal Chlorella vulgaris cell biosensors based on alginate and polypyrrole-alginate gels (2006) Electroanalysis 18 (11), pp. 1041-1046 | ||
| 504 | |a Perullini, M., Jobbagy, M., Moretti, B.M., Garcia, C.S., Bilmes, S.A., Optimizing Silica Encapsulation of Living Cells: In Situ Evaluation of Cellular Stress (2008) Chem. Mater, 20, pp. 3015-3021 | ||
| 504 | |a Perullini, M., Amoura, M., Jobbàgy, M., Roux, C., Livage, J., Coradin, T., Bilmes, S.A., (2011) J. Mater. Chem., 21 (22), pp. 8026-8031. , Improving bacteria viability in metal oxide hosts via an alginate-based hybrid approach | ||
| 504 | |a Perullini, M., Jobbagy, M., Bilmes, S., Torriani, I., Candal, R., Effect of synthesis conditions on the microstructure of TEOS derived silica hydrogels synthesized by the alcohol-free sol-gel route (2011) J. Sol-Gel Sci. Technol, 59 (1), pp. 174-180 | ||
| 504 | |a Perullini, M., Jobbagy, M., Japas, M., Bilmes, S., New method for the simultaneous determination of diffusion and adsorption of dyes in silica hydrogels (2014) J. Coll. Interf. Sci, 425, pp. 91-95 | ||
| 504 | |a Perullini, M., Ferro, Y., Durrieu, C., Jobbagy, M., Bilmes, S., Sol-gel silica platforms for microalgae-based optical biosensors (2014) J. Biotechnol, 179, pp. 65-70 | ||
| 504 | |a Sicard, C., Perullini, M., Spedalieri, C., Coradin, T., Brayner, R., Livage, J., Jobbagy, M., Bilmes, S.A., CeO2 Nanoparticles for the Protection of Photosynthetic Organisms Immobilized in Silica Gels (2011) Chem. Mater, 23, pp. 1374-1378 | ||
| 504 | |a Perullini, M., Durrieu, C., Jobbagy, M., Bilmes, S.A., Rhodamine B doped silica encapsulation matrices for the protection of photosynthetic organisms (2014) J. Biotechnol, 184 (20), pp. 94-99 | ||
| 504 | |a Pandard, P., Vasseur, P., Biocapteurs pour le contrôle de la toxicité des eaux: application des bioélectrodes algales (1992) Rev. Sci. Eau/J. Water Sci 5, pp. 445-461 | ||
| 504 | |a Giardi, M., Pace, E., (2005) Trends Biotech, 25, pp. 253-267 | ||
| 504 | |a Carrilho, E., Nobrega, J.A., Gilbert, T., (2003) Talanta, 60, pp. 1131-1140 | ||
| 504 | |a Moreno-Garrido, I., (2008) Bioresour Technol, 99, pp. 3949-3964 | ||
| 504 | |a Oettmeier, W., (1999) Cell Mol Life Sci, 10, pp. 1255-1277 | ||
| 504 | |a Shigeoka, T., Sato, Y., Takeda, Y., Yoshida, K., Yamauchi, F., (1988) Environ. Toxicol. Chem, (847) | ||
| 504 | |a Ma, J., Xu, L., Wang, S., Zheng, R., Jin, S., Huang, S., Huang, Y., (2002) Ecotoxicol Environ Safe, 51 (128) | ||
| 504 | |a Brayner, R., Couté, A., Livage, J., Perrette, C., Sicard, C., Micro-algal biosensors (2011) Anal. Bioanal. Chem, 401, pp. 581-597 | ||
| 520 | 3 | |a Sol-gel encapsulation of living cells within inorganic hydrogels, mainly silica, is a promising technology for the design of biosensors. These host-guest functional materials maintain specific biologic functions of their guest while the properties of the host can be tuned to fulfill the requirements of particular applications. Inorganic immobilization hosts exhibit several advantages over their (bio)polymer-based counterparts. While both hosts provide tailored porosity, the former offers enhanced chemical stability towards biodegradation as well as higher physical stability (low swelling). However, inone-pot encapsulations, the direct contact of cells with precursors during the sol-gel synthesis and the constraints imposed by the inorganic matrix during operating conditions may influence the biological response. In order to prevent this, an alternative two-step procedure was proposed. Living cells are pre-encapsulated in biocompatible carriers based on biopolymers such as alginates that confer protection during the inorganic and more cytotoxic synthesis. By means of these carriers, whole cultures of microorganisms remain confined in small liquid volumes generated inside the inorganic host, providing near conventional liquid culture conditions. Moreover, this approach allows the encapsulation of multicellular organisms and the co-encapsulation of multiple isolated cultures within a single common monolithic host, creating an artificial ecosystem in a diminished scale isolated inside a nanoporous matrix that would allow ecotoxicity studies to be carried out in portable devices for on-line and in situ pollution level assessment. © 2015 by Nova Science Publishers, Inc. |l eng | |
| 593 | |a INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a BIOSENSORS |
| 690 | 1 | 0 | |a ECOTOXICITY |
| 690 | 1 | 0 | |a SOL-GEL |
| 690 | 1 | 0 | |a TWO-STEP PROCEDURE |
| 690 | 1 | 0 | |a WHOLE-CULTURE ENCAPSULATION |
| 700 | 1 | |a Spedalieri, C. | |
| 700 | 1 | |a Jobbdgv, M. | |
| 700 | 1 | |a Bilmes, S.A. | |
| 773 | 0 | |d Nova Science Publishers, Inc., 2015 |h pp. 57-73 |p Adv. in Biosens. Res. |z 9781634636759 |z 9781634636520 |t Advances in Biosensors Research | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955644220&partnerID=40&md5=10a48f796e5ee8ff2a4032d96783309f |y Registro en Scopus |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_97816346_v_n_p57_Perullini |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p57_Perullini |y Registro en la Biblioteca Digital |
| 961 | |a paper_97816346_v_n_p57_Perullini |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/bookPart |a info:ar-repo/semantics/parte de libro |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 74596 | ||