Inorganic hydrogels for whole-culture encapsulation

Sol-gel encapsulation of living cells within inorganic hydrogels, mainly silica, is a promising technology for the design of biosensors. These host-guest functional materials maintain specific biologic functions of their guest while the properties of the host can be tuned to fulfill the requirements...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Perullini, M.
Otros Autores: Spedalieri, C., Jobbdgv, M., Bilmes, S.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nova Science Publishers, Inc. 2015
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12913caa a22011657a 4500
001 PAPER-13643
003 AR-BaUEN
005 20230518204402.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84955644220 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Perullini, M. 
245 1 0 |a Inorganic hydrogels for whole-culture encapsulation 
260 |b Nova Science Publishers, Inc.  |c 2015 
270 1 0 |m Perullini, M.; INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad UniversitariaArgentina 
506 |2 openaire  |e Política editorial 
504 |a Blondeau, M., Coradin, T., (2012) J. Mater. Chem, 22, pp. 22335-22343 
504 |a Depagne, C., Roux, C., Coradin, T., Analytical Bioanalytical Chemistry, 400 (965) 
504 |a Coradin, T., Nassif, N., (2003) J. Applied Microbiology and Biotechnology, 61 (429) 
504 |a Kataoka, K., Nagao, Y., Nukui, T., Akiyama, I., Tsuru, K., Hayakawa, S., Osaka, A., Huh, N.H., Biomaterials, 26 (2509) 
504 |a Eleftheriou, N.M., Xin Ge, J., Kolesnik, S.B., Falconer, R.J., Harris, C., Khursigara, E.D., Brown, J.D., Brennan, Brennan, Entrapment of Living Bacterial Cells in Low-Concentration Silica Materials Preserves Cell Division and Promoter Regulation (2013) Chem. Mater, 25 (23), pp. 4798-4805 
504 |a Perullini, M., Jobbagy, M., Soller-Illia, G.J.A.A., Bilmes, S.A., (2005) Chem. Mater., 17, pp. 3806-3808 
504 |a Ferro, Y., Perullini, M., Jobbagy, M., Bilmes, S.A., Durrieu, C., Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels Sensors, 12 (12), pp. 16879-16891 
504 |a Perullini, M., Rivero, M.M., Jobbagy, M., Mentaberry, A., Bilmes, S.A., (2007) J. Biotechnol, 127 (3), pp. 542-548 
504 |a Perullini, M., Jobbagy, M., Mouso, N., Forchiassin, F., Bilmes, S.A., Silica- alginate-fungi biocomposites for remediation of polluted water (2010), 20 (31), pp. 6479-6483; Jen, C., Wake, M.C., Mikos, G., (1996) Biotechnol. Bioeng, 50, pp. 357-364 
504 |a Rivest, C., Morrison, D., Ni, B., Rubin, J., Yadav, V., Mahdavi, A., Karp, J.M., Khademhosseini, A., (2007), 2; Hunt, N., Grover, L.M., (2010) Biotechnol. Lett, 32, pp. 733-742 
504 |a Nicodemus, G., Bryant, S.J., (2008) Tissue Eng. Part B. Rev, 14, pp. 149-165 
504 |a Sglavo, V., Carturan, G., Monte, D.R., Muraca, M., (1999) J. Mater. Sci, 34, pp. 3587-3590 
504 |a Muraca, M., Vilei, M., Zanusso, G., Ferraresso, C., Boninsegna, S., Monte, D.R., Carraro, P., Carturan, G., (2002) Artif. Organs, 26, pp. 664-669 
504 |a Armanini, L., Carturan, G., Boninsegna, S., Monte, D.R., Muraca, M., (1999) J. Mater. Chem, 9, pp. 3057-3060 
504 |a Eglin, D., Mosser, G., Giraud-Guille, M., Livage, J., Coradin, T., (2005) Soft Matter 1, (129) 
504 |a Ren, L., Tsuru, K., Hayakawa, S., Osaka, A., (2001) J. Sol-Gel Sci. Technol, 21, pp. 115-121 
504 |a Coradin, T., Livage, J., (2005) Mater. Sci. Eng. C, 25, pp. 201-205 
504 |a Benmouhoub, N., Simmonet, N., Agoudjil, N., Coradin, T., (2008) Green Chem 10, (957) 
504 |a Augst, A., Kong, H., Mooney, D., (2006) Macromol. Biosci, 6, pp. 623-633 
504 |a Mongar, I.L., Wassermann, A., (1952) J. Chem. Soc, pp. 492-497 
504 |a Karakasyan, C., Legros, M., Lack, S., Brunel, F., Maingault, P., Ducouret, G., Polyme, P., 2966-2975 (2010); Ouwerx, C., Velings, N., Mestdagh, M., Axelos, M., (1998) Polym. Gels Networks, 6, pp. 393-408 
504 |a Hickman, G., Rai, A., Boocock, D., Rees, R., Perry, C., (2012) J. Mater. Chem, 22, p. 12141 
504 |a Fang, Y., Al-Assaf, S., Phillips, G., Nishinari, K., Funami, T., Williams, P., Li, L., (2007) J. Phys. Chem. B, 111, pp. 2456-2462 
504 |a Donati, I., Holtan, S., Morch, A.Y., Borgogna, M., Dentini, M., Braek, S.G., (2005) Biomacromolecules, 6, pp. 1031-1040 
504 |a Perullini, M., PhD (2009), (145). , Thesis, University of Buenos Aires; Braschler, T., Valero, A., Colella, L., Pataky, K., Brugger, J., Renaud, P., (2011) Anal. Chem 83, pp. 2234-2242 
504 |a Bienaimé, C., Barbotin, J., Nava-Saucedo, J.E., (2003) J. Biomed. Mater. Res. A, 67, pp. 376-388 
504 |a Sugiura, S., Oda, T., Aoyagi, Y., Matsuo, R., Enomoto, T., Matsumoto, K., Nakamura, T., Nakajima, M., (2007) Biomed. Microdevices, 9, pp. 91-99 
504 |a Lian, M., Collier, C., Doktycz, M., Retterer, S.T., (2012) Biomicrofluidics 6, p. 44108 
504 |a Haeberle, S., Naegele, L., Burger, R., Stetten, V.F., Zengerle, R., Ducrée, J., (2008) J. Microencapsul, 25, pp. 267-274 
504 |a Delaney, J., Liberski, A., Schubert, U., (2010) Soft Matter, 6, pp. 866-869 
504 |a Liu, L., Kost, J., Yan, F., Spiro, R.C., (2012) Polymers (Basel), 4, pp. 997-1011 
504 |a Mongar, I., Wassermann, A., (1952) J. Chem. Soc, pp. 492-497 
504 |a Klein, J., Stock, J., Vorlop, K., (1983) Eur. J. Appl. Microbiol, pp. 86-91 
504 |a Scherer, P., Kluge, M., Klein, J., Sahm, H., (1981) Biotechnol. Bioeng, 23, pp. 1057-1065 
504 |a Fukushima, Y., Okamura, K., Imai, K., Motai, H., (1988) Biotechnol. Bioeng, 32, pp. 584-594 
504 |a Sakai, S., Ono, T., Ijima, H., Kawakami, K., (2001) Biomaterials, 22, pp. 2827-2834 
504 |a Sakai, S., Ono, T., Ijima, H., Kawakami, K., (2002) Biomaterials, 23, pp. 4177-4183 
504 |a Coradin, T., Mercey, E., Lisnard, L., Livage, J., (2001) Chem. Commun. (Camb), pp. 2496-2497 
504 |a Rajaonarivony, M., Vauthier, C., Couarraze, G., Puisieux, F., Couvreur, P., (1993) J. Pharm. Sci, 82, pp. 912-917 
504 |a Boissière, M., Meadows, P., Brayner, R., Hélary, C., Livage, J., Coradin, T., (2006) J. Mater. Chem, 16 (1178) 
504 |a Coradin, T., Mercey, E., Lisnard, L., Livage, J., (2003) Chem. Commun. (Camb), 61, pp. 429-434 
504 |a Coradin, T., Nassif, N., Livage, J., (2003) Appl. Microbiol. Biotechnol, 61, pp. 429-434 
504 |a Carturan, G., Toso, D.R., Boninsegna, S., Monte, D.R., (2004) J. Mater. Chem, 14 (2087) 
504 |a Boninsegna, S., Bosetti, P., Carturan, G., Dellagiacoma, G., Monte, D.R., Rossi, M., (2003) J. Biotechnol, 100, pp. 277-286 
504 |a Boninsegna, S., Toso, D.R., Monte, D.R., Carturan, G., (2003) J. Sol-Gel Sci. Technol, 26, pp. 1151-1157 
504 |a Magagna, C., Rossi, M., Bellavite, P., Carturan, G., Boninsegna, S., Monte, D.R., Toso, D.R., (2002) Advances in Islet Cell Biology, pp. 3-6 
504 |a Livage, J., Coradin, T., Living cells in oxide glasses (2006) Reviews in Mineralogy and Geochemistry, 64 (1), pp. 315-332 
504 |a Soltmann, U., Böttcher, H., Utilization of sol-gel ceramics for the immobilization of living microorganisms (2008) J Sol-Gel Sci. Technol, 48, pp. 66-72 
504 |a Blondeau, M., Coradin, T., Living materials from sol-gel chemistry: current challenges and perspectives (2012) J. Mater. Chem, 22, p. 22335 
504 |a Kuncova, G., Podrazky, O., Ripp, S., Trögl, J., Sayler, G., Demnerova, K., Vankova, R. Monitoring of the viability of cells immobilized by sol-gel process (2004) J. Sol-Gel Sci. Technol, 31, pp. 1-8 
504 |a Moreno-Garrido, I., Microalgae immobilization: Current techniques and uses (2008) Bioresour Technol, 99, pp. 3949-3964 
504 |a Ionescu, R., Abu-Rabeah, K., Cosnier, S., Durrieu, C., Chovelon, J., Marks, R., Amperometric algal Chlorella vulgaris cell biosensors based on alginate and polypyrrole-alginate gels (2006) Electroanalysis 18 (11), pp. 1041-1046 
504 |a Perullini, M., Jobbagy, M., Moretti, B.M., Garcia, C.S., Bilmes, S.A., Optimizing Silica Encapsulation of Living Cells: In Situ Evaluation of Cellular Stress (2008) Chem. Mater, 20, pp. 3015-3021 
504 |a Perullini, M., Amoura, M., Jobbàgy, M., Roux, C., Livage, J., Coradin, T., Bilmes, S.A., (2011) J. Mater. Chem., 21 (22), pp. 8026-8031. , Improving bacteria viability in metal oxide hosts via an alginate-based hybrid approach 
504 |a Perullini, M., Jobbagy, M., Bilmes, S., Torriani, I., Candal, R., Effect of synthesis conditions on the microstructure of TEOS derived silica hydrogels synthesized by the alcohol-free sol-gel route (2011) J. Sol-Gel Sci. Technol, 59 (1), pp. 174-180 
504 |a Perullini, M., Jobbagy, M., Japas, M., Bilmes, S., New method for the simultaneous determination of diffusion and adsorption of dyes in silica hydrogels (2014) J. Coll. Interf. Sci, 425, pp. 91-95 
504 |a Perullini, M., Ferro, Y., Durrieu, C., Jobbagy, M., Bilmes, S., Sol-gel silica platforms for microalgae-based optical biosensors (2014) J. Biotechnol, 179, pp. 65-70 
504 |a Sicard, C., Perullini, M., Spedalieri, C., Coradin, T., Brayner, R., Livage, J., Jobbagy, M., Bilmes, S.A., CeO2 Nanoparticles for the Protection of Photosynthetic Organisms Immobilized in Silica Gels (2011) Chem. Mater, 23, pp. 1374-1378 
504 |a Perullini, M., Durrieu, C., Jobbagy, M., Bilmes, S.A., Rhodamine B doped silica encapsulation matrices for the protection of photosynthetic organisms (2014) J. Biotechnol, 184 (20), pp. 94-99 
504 |a Pandard, P., Vasseur, P., Biocapteurs pour le contrôle de la toxicité des eaux: application des bioélectrodes algales (1992) Rev. Sci. Eau/J. Water Sci 5, pp. 445-461 
504 |a Giardi, M., Pace, E., (2005) Trends Biotech, 25, pp. 253-267 
504 |a Carrilho, E., Nobrega, J.A., Gilbert, T., (2003) Talanta, 60, pp. 1131-1140 
504 |a Moreno-Garrido, I., (2008) Bioresour Technol, 99, pp. 3949-3964 
504 |a Oettmeier, W., (1999) Cell Mol Life Sci, 10, pp. 1255-1277 
504 |a Shigeoka, T., Sato, Y., Takeda, Y., Yoshida, K., Yamauchi, F., (1988) Environ. Toxicol. Chem, (847) 
504 |a Ma, J., Xu, L., Wang, S., Zheng, R., Jin, S., Huang, S., Huang, Y., (2002) Ecotoxicol Environ Safe, 51 (128) 
504 |a Brayner, R., Couté, A., Livage, J., Perrette, C., Sicard, C., Micro-algal biosensors (2011) Anal. Bioanal. Chem, 401, pp. 581-597 
520 3 |a Sol-gel encapsulation of living cells within inorganic hydrogels, mainly silica, is a promising technology for the design of biosensors. These host-guest functional materials maintain specific biologic functions of their guest while the properties of the host can be tuned to fulfill the requirements of particular applications. Inorganic immobilization hosts exhibit several advantages over their (bio)polymer-based counterparts. While both hosts provide tailored porosity, the former offers enhanced chemical stability towards biodegradation as well as higher physical stability (low swelling). However, inone-pot encapsulations, the direct contact of cells with precursors during the sol-gel synthesis and the constraints imposed by the inorganic matrix during operating conditions may influence the biological response. In order to prevent this, an alternative two-step procedure was proposed. Living cells are pre-encapsulated in biocompatible carriers based on biopolymers such as alginates that confer protection during the inorganic and more cytotoxic synthesis. By means of these carriers, whole cultures of microorganisms remain confined in small liquid volumes generated inside the inorganic host, providing near conventional liquid culture conditions. Moreover, this approach allows the encapsulation of multicellular organisms and the co-encapsulation of multiple isolated cultures within a single common monolithic host, creating an artificial ecosystem in a diminished scale isolated inside a nanoporous matrix that would allow ecotoxicity studies to be carried out in portable devices for on-line and in situ pollution level assessment. © 2015 by Nova Science Publishers, Inc.  |l eng 
593 |a INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina 
690 1 0 |a BIOSENSORS 
690 1 0 |a ECOTOXICITY 
690 1 0 |a SOL-GEL 
690 1 0 |a TWO-STEP PROCEDURE 
690 1 0 |a WHOLE-CULTURE ENCAPSULATION 
700 1 |a Spedalieri, C. 
700 1 |a Jobbdgv, M. 
700 1 |a Bilmes, S.A. 
773 0 |d Nova Science Publishers, Inc., 2015  |h pp. 57-73  |p Adv. in Biosens. Res.  |z 9781634636759  |z 9781634636520  |t Advances in Biosensors Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955644220&partnerID=40&md5=10a48f796e5ee8ff2a4032d96783309f  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97816346_v_n_p57_Perullini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p57_Perullini  |y Registro en la Biblioteca Digital 
961 |a paper_97816346_v_n_p57_Perullini  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 74596