Finite size effects in neutron star and nuclear matter simulations

In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called "finite size effects", unavoidable in this kind of simulations, and to understand wh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Giménez Molinelli, Pedro Agustín
Otros Autores: Dorso, Claudio Oscar
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09512caa a22009017a 4500
001 PAPER-13606
003 AR-BaUEN
005 20250411092647.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84912023107 
030 |a NUPAB 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Giménez Molinelli, Pedro Agustín 
245 1 0 |a Finite size effects in neutron star and nuclear matter simulations 
260 |b Elsevier  |c 2015 
270 1 0 |m Giménez Molinelli, P.A.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA CONICET, Cuidad Universitaria, Argentina 
504 |a Ravenhall, D.G., Pethick, C.J., Wilson, J.R., (1983) Phys. Rev. Lett., 50, p. 2066 
504 |a Williams, R.D., Koonin, S.E., (1985) Nucl. Phys. A, 435, p. 844 
504 |a Fetter, A.L., Wallecka, J.D., (1971) Quantum Theory of Many-Particle Systems, , McGraw-Hill 
504 |a Maruyama, T., Niita, K., Oyamatsu, K., Maruyama, T., Chiba, S., Iwamoto, A., (1998) Phys. Rev. C, 57, p. 655 
504 |a Watanabe, G., Sato, K., Yasuoka, K., Ebisuzaki, T., (2002) Phys. Rev. C, 66, p. 012801 
504 |a Horowitz, C.J., Perez-Garcia, M.A., Piekarewicz, J., (2004) Phys. Rev. C, 69, p. 045804 
504 |a Alcain, P.N., Giménez Molinelli, P.A., Nichols, J.I., Dorso, C.O., (2014) Phys. Rev. C, 89, p. 055801 
504 |a Alcain, P.N., Giménez Molinelli, P.A., Dorso, C.O., arxiv:1406.1550; Dorso, C.O., López, J.A., Giménez Molinelli, P.A., (2012) Phys. Rev. C, 86, p. 055805 
504 |a Binder, K., Block, B.J., Virnau, P., Tröster, A., (2012) Am. J. Phys., 80, p. 1009 
504 |a Giménez Molinelli, P.A., Nichols, J.I., López, J.A., Dorso, C.O., (2014) Nucl. Phys. A, 923, pp. 31-50 
504 |a Schrader, M., Virnau, P., Binder, K., (2009) Phys. Rev. E, 79, p. 061104 
504 |a MacDowell, L.G., Shen, V.K., Errington, J.R., (2006) J. Chem. Phys., 125, p. 034705 
504 |a Frenkel, D., Smit, B., (2002) Understanding Molecular Simulations, , Academic Press 
504 |a Watanabe, G., Sato, K., Yasuoka, K., Ebisuzaki, T., (2004) Phys. Rev. C, 69, p. 055805 
504 |a Horowitz, C.J., Perez-Garcia, M.A., Berry, D.K., Piekarewicz, J., (2005) Phys. Rev. C, 72, p. 035801 
504 |a Newton, W.G., Stone, J.R., (2009) Phys. Rev. C, 79, p. 055801 
504 |a Nakasato, K., Oyamatsu, K., Yamada, S., (2009) Phys. Rev. Lett., 103, p. 132501 
504 |a Föster, S., Planterberg, T., (2002) Angew. Chem. Int. Ed., 41, pp. 688-714 
504 |a Sonoda, H., Watanabe, G., Sato, K., Yasuoka, K., Ebisuzaki, T., (2008) Phys. Rev. C, 77, p. 035806 
504 |a Ortiz, C., Lorenzana, J., Di Castro, C., (2008) Phys. Rev. Lett., 100, p. 246402 
504 |a Archer, J., Ionescu, C., Reatto, L., (2008) J. Phys. Condens. Matter, 20, p. 415106 
504 |a Larsson, K., Tiberg, F., (2005) Curr. Opin. Colloid Interface Sci., 9, pp. 365-369 
504 |a Gòzỳdzỳ, W., Holyst, R., (1996) Macromol. Theory Simul., 5, pp. 321-332 
504 |a Okamoto, M., Maruyama, T., Yabana, K., Matsumi, T., (2012) Phys. Lett. B, 713, pp. 284-288 
504 |a Okamoto, M., Maruyama, T., Yabana, K., Tatsumi, T., (2013) Phys. Rev. C, 88, p. 025801 
504 |a Pais, H., Stone, J.R., (2012) Phys. Rev. Lett., 109, p. 151101 
504 |a Lord, E.A., MacKay, A.L., (2003) Curr. Sci., 85 (3), pp. 346-362 
504 |a Barrañón, A., Dorso, C.O., López, J.A., Morales, J., (1999) Rev. Mex. Fis., 45, p. 110 
504 |a Vicentini, A., Jacucci, G., Pandharipande, V.R., (1985) Phys. Rev. C, 31, p. 1783 
504 |a Lenk, R.J., Pandharipande, V.R., (1986) Phys. Rev. C, 34, p. 177 
504 |a Lenk, R.J., Schlagel, T.J., Pandharipande, V.R., (1990) Phys. Rev. C, 42, p. 372 
504 |a Chernomoretz, A., Gingras, L., Larochelle, Y., Beaulieu, L., Roy, R., St-Pierre, C., Dorso, C.O., (2002) Phys. Rev. C, 65, p. 054613 
504 |a Barrañón, A., Dorso, C.O., López, J.A., (2007) Nucl. Phys. A, 791, p. 222 
504 |a Barrañón, A., Cárdenas, R., Dorso, C.O., López, J.A., (2003) Heavy Ion Phys., 17 (1), p. 41 
504 |a Dorso, C.O., López, J.A., (2001) Phys. Rev. C, 64, p. 027602 
504 |a Chernomoretz, A., Dorso, C.O., López, J.A., (2001) Phys. Rev. C, 64, p. 044605 
504 |a Barrañón, A., Escamilla Roa, J., López, J.A., (2004) Phys. Rev. C, 69, p. 014601 
504 |a Dorso, C.O., Escudero, C.R., Ison, M., López, J.A., (2006) Phys. Rev. C, 73, p. 044601 
504 |a Dorso, C.O., Giménez Molinelli, P.A., López, J.A., (2011) J. Phys. G, Nucl. Part. Phys., 38, p. 115101 
504 |a Dorso, C.O., Giménez Molinelli, P.A., López, J.A., (2011) Rev. Mex. Phys., S57 (1), p. 14 
504 |a Andersen, H.C., (1980) J. Chem. Phys., 72, p. 2384 
504 |a Rapaport, D.C., (2011) Comput. Phys. Commun., 182 (4), pp. 926-934 
504 |a http://www.nvidia.com/object/cuda_home_new.html; http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-560ti/specifications; Adams, D., (1983) CCP5 Inf. Q., 10, pp. 30-36 
506 |2 openaire  |e Política editorial 
520 3 |a In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called "finite size effects", unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the "nuclear pasta" phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations-for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities.To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a single structure per cell while the cubic and truncated octahedron show consistent results, with more than one structure per cell. For systems of the size studied in this work these effects are still noticeable, but we find evidence to support that the dependence of the results on the cell geometry becomes smaller as the system size is increased. When the Coulomb interaction is present, the competition between opposing interactions of different range results in a proper, physically meaningful length scale that is independent of the system size and periodic cell of choice. Only under these conditions "finite size effects" will vanish for large enough systems (i.e. cells much larger than this characteristic length). Larger simulations are in order, but our computational capabilities forbid it for the time being. © 2014 Elsevier B.V..  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP5969 
536 |a Detalles de la financiación: C.O.D. is a member of the “Carrera del Investigador” CONICET supported by CONICET through grant PIP5969 . 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA CONICET, Cuidad Universitaria, Buenos Aires, 428, Argentina 
690 1 0 |a FINITE SIZE EFFECTS 
690 1 0 |a MOLECULAR DYNAMICS SIMULATIONS 
690 1 0 |a NUCLEAR ASTROPHYSICS 
690 1 0 |a NUCLEAR MATTER PHASE TRANSITION 
700 1 |a Dorso, Claudio Oscar 
773 0 |d Elsevier, 2015  |g v. 933  |h pp. 306-324  |p Nucl. Phys. A  |x 03759474  |w (AR-BaUEN)CENRE-285  |t Nuclear Physics A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84912023107&doi=10.1016%2fj.nuclphysa.2014.11.005&partnerID=40&md5=2b67f027a9d88df5afafcf1d8abc1885  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.nuclphysa.2014.11.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03759474_v933_n_p306_GimenezMolinelli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03759474_v933_n_p306_GimenezMolinelli  |y Registro en la Biblioteca Digital 
961 |a paper_03759474_v933_n_p306_GimenezMolinelli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 74559