Ground-penetrating radar investigation of the cylindrical pedestal of a monument

We describe a GPR methodology used to investigate the internal structure of three consecutive sections of the cylindrical pedestal of a monument that had to be disassembled for relocation. We acquired constant-offset circular profiles and non-standard variable-offset profiles at different heights al...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonomo, N.
Otros Autores: Bullo, D., Villela, A., Osella, Ana María
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09010caa a22008777a 4500
001 PAPER-13554
003 AR-BaUEN
005 20250807110848.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84920127441 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bonomo, N. 
245 1 0 |a Ground-penetrating radar investigation of the cylindrical pedestal of a monument 
260 |b Elsevier  |c 2015 
270 1 0 |m Bonomo, N.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IFIBA, CONICET, Ciudad UniversitariaArgentina 
504 |a Acharya, T., Ray, A., (2005) Image Processing: Principles and Applications, , John Wiley and Sons, New Jersey 
504 |a Alani, A., Aboutalebi, M., Kilic, G., Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment (2013) J. Appl. Geophys., 97, pp. 45-54 
504 |a Annan, A.P., Electromagnetic principles of ground penetrating radar (2009) Ground Penetrating Radar: Theory and Applications, , Elsevier, Amsterdam, H. Jol (Ed.) 
504 |a Benedetto, A., A three dimensional approach for tracking cracks in bridges using GPR (2013) J. Appl. Geophys., 97, pp. 37-44 
504 |a Butnor, J., Pruyn, M., Shaw, D., Harmon, M., Mucciardi, A., Ryan, M., Detecting defects in conifers with ground penetrating radar: applications and challenges (2009) For. Pathol., 39, pp. 309-322 
504 |a Catapano, I., Di Napoli, R., Soldovieri, F., Bavusi, M., Loperte, A., Dumoulin, J., Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site (2012) J. Geophys. Eng., 9, pp. S100-S107 
504 |a Daniels, D., Ground penetrating radar (2007) IET Radar, Sonar, Navigation and Avionics Series, 15. , (London) 
504 |a Halabe, U., Pyakurel, S., 3D GPR imaging of wooden logs (2007) AIP Conf. Proc., 894, p. 695 
504 |a Leucci, G., Cataldo, R., De Nunzio, G., Assessment of fractures in some columns inside the crypt of the Cattedrale di Otranto using integrated geophysical methods (2007) J. Archaeol. Sci., 34, pp. 222-232 
504 |a Leucci, G., Persico, R., Soldovieri, F., Detection of fractures from GPR data: the case history of the Cathedral of Otranto (2007) J. Geophys. Eng., 4, pp. 452-461 
504 |a Masini, N., Persico, R., Rizzo, E., Calia, A., Giannotta, M.T., Quarta, G., Pagliuca, A., Integrated techniques for analysis and monitoring of historical monuments: the case of San Giovanni al Sepolcro in Brindisi, southern Italy (2010) Near Surf. Geophys., 8, pp. 423-432 
504 |a Miller, W., Doolittle, J., The application of ground-penetrating radar to detection of internal defect in standing trees (1990) Proceedings of the 7th International Nondestructive Testing of Wood Symposium, September 27-29, 1990, pp. 263-274. , Washington State University, Pullman, Washington 
504 |a Nicolotti, G., Socco, L.V., Martinis, R., Godio, A., Sambuelli, L., Application and comparison of three tomographic techniques for detection decay in trees (2003) J. Arboric., 29, pp. 66-78 
504 |a Nuzzo, L., Quarta, T., GPR prospecting of cylindrical structures in cultural heritage applications: a review of geometric issues (2012) Near Surf. Geophys., 10, pp. 17-34 
504 |a Pyakurel, S., Halabe, U., 2D and 3D imaging of concrete fiber reinforced polymer composite wrapped cylindrical columns using ground penetrating radar (2013) Mater. Eval., 71 (1), pp. 73-82 
504 |a Radzevicius, S.J., Clark, B.T., Herbst, D., Webster, T.T., Imaging columns with GPR (2004) Proceedings of the Tenth International Conference on Ground Penetrating Radar, GPR 2004 1, pp. 387-390 
504 |a Saey, T., Delefortrie, S., Verdonck, L., De Smedt, P., Van Meirvenne, M., Integrating EMI and GPR data to enhance the three-dimensional reconstruction of a circular ditch system (2014) J. Appl. Geophys., 101, pp. 42-50 
504 |a Sayed, A., Adaptive filters (2008) IEEE Computer Soc Pr, , John Wiley and Sons, New Jersey 
504 |a Stryk, J., Matula, R., Pospisil, K., Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements (2013) J. Appl. Geophys., 97, pp. 11-26 
504 |a Villela, A., Romo, J., Invariant properties and rotation transformations of the GPR scattering matrix (2013) J. Appl. Geophys., 90, pp. 71-81 
504 |a Yilmaz, O., (2001) Seismic Data Analysis, , Society of Exploration Geophysicists, Tulsa, Oklahoma 
506 |2 openaire  |e Política editorial 
520 3 |a We describe a GPR methodology used to investigate the internal structure of three consecutive sections of the cylindrical pedestal of a monument that had to be disassembled for relocation. We acquired constant-offset circular profiles and non-standard variable-offset profiles at different heights along the pedestal. In the raw data sections, the reflections of interest were hidden by significant environmental noise with frequencies that overlapped those of the transmitted pulses and varied from trace to trace. We successfully eliminated the noise by iteratively fitting sinusoidal waves in different x-. t windows and by subtracting the results from the traces. The resulting sections were interesting because they exhibited numerous and varied reflections. We analysed these sections using a combination of procedures previously used for cylindrical structures and other procedures adapted from protocols commonly used for plane semi-spaces. In particular, we evaluated the information provided by the variable-offset profiles and determined how it complemented the information obtained from the constant-offset profiles. In the variable-offset profiles, multiple reflections produced at the cylinder-air interface were reliably distinguished up to the fifth-order of reflection by taking advantage of their distinctive shapes. In the constant-offset profiles, this information was used to distinguish the multiples from possible signals of internal structures or their multiples and from unwanted signals produced by the GPR system, which can be confused with the multiples. We also considered obtaining the propagation velocity across the structure with a high degree of reliability by including the travel times of higher-order multiples in the calculations. Fitting of the theoretical curves, migration and polar representations allowed for a thorough interpretation of the reflectors present in the structures. Probable reinforcement bars, circular ties, natural veins of the material and reflectors located in nearby sections of the monument were identified. The continuity of the reflectors along the pedestal was determined. On this basis, an efficient disassembly and relocation plan for the monument was designed and performed. © 2014 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was partially supported by CONICET . We thank CONACYT of México for Almendra Villela's postdoctoral fellowship at IFIBA-CONICET. 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a CYLINDRICAL STRUCTURE 
690 1 0 |a GPR 
690 1 0 |a PEDESTAL 
690 1 0 |a VARIABLE-OFFSET CIRCULAR PROFILES 
690 1 0 |a CURVE FITTING 
690 1 0 |a GEOLOGICAL SURVEYS 
690 1 0 |a ITERATIVE METHODS 
690 1 0 |a REFLECTION 
690 1 0 |a TRAVEL TIME 
690 1 0 |a CIRCULAR PROFILE 
690 1 0 |a CYLINDRICAL STRUCTURE 
690 1 0 |a DEGREE OF RELIABILITY 
690 1 0 |a GROUND PENETRATING RADAR 
690 1 0 |a MULTIPLE REFLECTIONS 
690 1 0 |a PEDESTAL 
690 1 0 |a POLAR REPRESENTATION 
690 1 0 |a PROPAGATION VELOCITIES 
690 1 0 |a GROUND PENETRATING RADAR SYSTEMS 
690 1 0 |a CYLINDER 
690 1 0 |a GROUND PENETRATING RADAR 
690 1 0 |a MONUMENT 
690 1 0 |a REINFORCEMENT 
690 1 0 |a TRAVEL TIME 
690 1 0 |a VELOCITY PROFILE 
700 1 |a Bullo, D. 
700 1 |a Villela, A. 
700 1 |a Osella, Ana María 
773 0 |d Elsevier, 2015  |g v. 113  |h pp. 1-13  |p J. Appl. Geophys.  |x 09269851  |w (AR-BaUEN)CENRE-5414  |t Journal of Applied Geophysics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920127441&doi=10.1016%2fj.jappgeo.2014.12.009&partnerID=40&md5=5b31d0542b932ab2460c1d3cd7a1fbe5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jappgeo.2014.12.009  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09269851_v113_n_p1_Bonomo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09269851_v113_n_p1_Bonomo  |y Registro en la Biblioteca Digital 
961 |a paper_09269851_v113_n_p1_Bonomo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74507