Nitric Oxide Is Reduced to HNO by Proton-Coupled Nucleophilic Attack by Ascorbate, Tyrosine, and Other Alcohols. A New Route to HNO in Biological Media?

The role of NO in biology is well established. However, an increasing body of evidence suggests that azanone (HNO), could also be involved in biological processes, some of which are attributed to NO. In this context, one of the most important and yet unanswered questions is whether and how HNO is pr...

Descripción completa

Detalles Bibliográficos
Autor principal: Suarez, S.A
Otros Autores: Neuman, N.I, Muñoz, M., Álvarez, L., Bikiel, D.E, Brondino, Carlos Dante, Ivanović-Burmazović, I., Miljkovic, J.L, Filipovic, M.R, Martí, M.A, Doctorovich, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13881caa a22019937a 4500
001 PAPER-13468
003 AR-BaUEN
005 20241101095437.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84927940639 
024 7 |2 cas  |a ascorbic acid, 134-03-2, 15421-15-5, 50-81-7; inducible nitric oxide synthase, 501433-35-8; nitric oxide, 10102-43-9; tyrosine, 16870-43-2, 55520-40-6, 60-18-4; nitrogen oxide, 11104-93-1; Alcohols; alkoxyl radical; Ascorbic Acid; Nitric Oxide; Nitrogen Oxides; nitroxyl; Tyrosine 
030 |a JACSA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Suarez, S.A. 
245 1 0 |a Nitric Oxide Is Reduced to HNO by Proton-Coupled Nucleophilic Attack by Ascorbate, Tyrosine, and Other Alcohols. A New Route to HNO in Biological Media? 
260 |b American Chemical Society  |c 2015 
270 1 0 |m Martí, M.A.; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina 
504 |a Napoli, C., Paolisso, G., Casamassimi, A., Al-Omran, M., Barbieri, M., Sommese, L., Infante, T., Ignarro, L.J., (2013) J. Am. Coll. Cardiol., 62, p. 89 
504 |a Tonzetich, Z.J., McQuade, L.E., Lippard, S.J., (2010) Inorg. Chem., 49, p. 6338 
504 |a Goodrich, L.E., Paulat, F., Praneeth, V.K.K., Lehnert, N., Arbor, A., (2010) Biochemistry, p. 6293 
504 |a Martínez-Ruiz, A., Cadenas, S., Lamas, S., (2011) Free Radic. Biol. Med., 51, p. 17 
504 |a Bruce King, S., (2013) Free Radic. Biol. Med., 55, p. 1 
504 |a Irvine, J.C., Ritchie, R.H., Favaloro, J.L., Andrews, K.L., Widdop, R.E., Kemp-Harper, B.K., (2008) Trends Pharmacol. Sci., 29, p. 601 
504 |a Flores-Santana, W., Salmon, D.J., Donzelli, S., Switzer, C.H., Basudhar, D., Ridnour, L., Cheng, R., Wink, D.A., (2011) Antioxid. Redox Signal., 14, p. 1659 
504 |a Miranda, K.M., (2005) Coord. Chem. Rev., 249, p. 433 
504 |a Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 7340 
504 |a Lymar, S.V., Shafirovich, V., Poskrebyshev, G.A., (2005) Inorg. Chem., 44, p. 5212 
504 |a Miranda, K.M., Nims, R.W., Thomas, D.D., Espey, M.G., Citrin, D., Bartberger, M.D., Paolocci, N., Wink, D.A., (2003) J. Inorg. Biochem., 93, p. 52 
504 |a Liochev, S., (2003) Free Radic. Biol. Med., 34, p. 1399 
504 |a Bartberger, M.D., Fukuto, J.M., Houk, K.N., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, p. 2194 
504 |a Ford, P.C., (2010) Inorg. Chem., 49, p. 6226 
504 |a Hoshino, M., Laverman, L., Ford, P.C., (1999) Coord. Chem. Rev., 187, p. 75 
504 |a Cline, M.R., Tu, C., Silverman, D.N., Toscano, J.P., (2011) Free Radic. Biol. Med., 50, p. 1274 
504 |a Reisz, J.A., Zink, C.N., King, S.B., (2011) J. Am. Chem. Soc., 133, p. 11675 
504 |a Donzelli, S., Espey, M.G., Flores-Santana, W., Switzer, C.H., Yeh, G.C., Huang, J., Stuehr, D.J., Wink, D.A., (2008) Free Radic. Biol. Med., 45, p. 578 
504 |a Suárez, S.A., Martí, M.A., De Biase, P.M., Estrin, D.A., Bari, S.E., Doctorovich, F., (2007) Polyhedron, 26, p. 4673 
504 |a Dobmeier, K.P., Riccio, D.A., Schoenfisch, M.H., (2008) Anal. Chem., 80, p. 1247 
504 |a Martí, M.A., Bari, S.E., Estrin, D.A., Doctorovich, F., (2005) J. Am. Chem. Soc., 127, p. 4680 
504 |a Zhou, Y., Liu, K., Li, J.-Y., Fang, Y., Zhao, T.-C., Yao, C., (2011) Org. Lett., 13, p. 2357 
504 |a Doctorovich, F., Bikiel, D., Pellegrino, J., Suárez, S.A., Larsen, A., Martí, M.A., (2011) Coord. Chem. Rev., 255, p. 2764 
504 |a Tennyson, A.G., Do, L., Smith, R.C., Lippard, S.J., (2006) Nitric Oxide, 26, p. 1 
504 |a Rosenthal, J., Lippard, S.J., (2010) J. Am. Chem. Soc., 132, p. 5536 
504 |a Wrobel, A.T., Johnstone, T.C., Liang, A.D., Lippard, S.J., Rivera-Fuentes, P., (2014) J. Am. Chem. Soc., 136, p. 4697 
504 |a Suárez, S.A., Fonticelli, M.H., Rubert, A.A., De La Llave, E., Scherlis, D., Salvarezza, R.C., Martí, M.A., Doctorovich, F., (2010) Inorg. Chem., 49, p. 6955 
504 |a Suárez, S., Bikiel, D., Wetzler, D., Martí, M.A., Doctorovich, F., (2013) Anal. Chem., 85, pp. 10262-10269 
504 |a Sirsalmath, K., Suárez, S.A., Bikiel, D.E., Doctorovich, F., (2013) J. Inorg. Biochem., 118, p. 134 
504 |a Filipovic, M.R., Eberhardt, M., Prokopovic, V., Mijuskovic, A., Orescanin-Dusic, Z., Reeh, P., Ivanovic-Burmazovic, I., (2013) J. Med. Chem., 56, p. 1499 
504 |a Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., Kichko, T.I., Filipovic, M.R., (2014) Nat. Commun., 5, p. 4381 
504 |a Fukuto, J.M., Cisneros, C.J., Kinkade, R.L., (2013) J. Inorg. Biochem., 118, p. 201 
504 |a Miranda, K.M., Paolocci, N., Katori, T., Thomas, D.D., Ford, E., Bartberger, M.D., Espey, M.G., Wink, D.A., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 9196 
504 |a Paolocci, N., Saavedra, W.F., Miranda, K.M., Martignani, C., Isoda, T., Hare, J.M., Espey, M.G., Kass, D.A., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, p. 10463 
504 |a Adak, S., Wang, Q., Stuehr, D.J., (2000) J. Biol. Chem., 275, p. 33554 
504 |a Schmidt, H.H.H.W., Hofmann, H., Schindler, U., Shutenko, Z.S., Cunningham, D.D., Feelisch, M., (1996) Proc. Natl. Acad. Sci. U.S.A., 93, p. 14492 
504 |a Feelisch, M., Te Poel, M., Zamora, R., Deussen, A., Moncada, S., (1994) Nature, 368, p. 62 
504 |a Rousseau, D.L., Li, D., Couture, M., Yeh, S.-R., (2005) J. Inorg. Biochem., 99, p. 306 
504 |a Ishimura, Y., Gao, Y.T., Panda, S.P., Roman, L.J., Masters, B.S.S., Weintraub, S.T., (2005) Biochem. Biophys. Res. Commun., 338, p. 543 
504 |a Sabat, J., Egawa, T., Lu, C., Stuehr, D.J., Gerfen, G.J., Rousseau, D.L., Yeh, S.-R., (2013) J. Biol. Chem., 288, p. 6095 
504 |a Li, D., Kabir, M., Stuehr, D.J., Rousseau, D.L., Yeh, S.-R., (2007) J. Am. Chem. Soc., 129, p. 6943 
504 |a Donzelli, S., Graham, M., Flores-Santana, W., Switzer, C.H., Yeh, G.C., Huang, J., Stuehr, D.J., Espey, M.G., (2008) Free Radic. Biol. Med., 45, p. 578 
504 |a Kytzia, A., Korth, H., Sustmann, R., Groot, H., De Kirsch, M., (2006) Chem. - Eur. J., p. 8786 
504 |a Armstrong, D.A., Huie, R.E., Lymar, S., Koppenol, W.H., Merényi, G., Neta, P., Stanbury, D.M., Wardman, P., (2013) Bioinorg. React. Mech., 9, p. 59 
504 |a Filipovic, M.R.M., Miljkovic, J.L.J., Nauser, T., Royzen, M., Klos, K., Shubina, T., Koppenol, W.H., Ivanovic, I., (2012) J. Am. Chem. Soc., 134, p. 12016 
504 |a Miljkovic, J.L., Kenkel, I., Ivanović-Burmazović, I., Filipovic, M.R., (2013) Angew. Chem., Int. Ed., 52, p. 12061 
504 |a Clyne, M.A.A., Thrush, B.A., (1961) Trans. Faraday Soc., 57, p. 1305 
504 |a Cashion, J.K., Polanyi, J.C., (1959) J. Chem. Phys., 30, p. 317 
504 |a Strausz, O.P., Gunning, H.E., (1964) Trans. Faraday Soc., 60, p. 347 
504 |a Kohout, F.C., Lampe, F.W., (1965) J. Am. Chem. Soc., 87, p. 5795 
504 |a Miranda, K.M., Paolocci, N., Katori, T., Thomas, D.D., Ford, E., Bartberger, M.D., Espey, M.G., Wink, D.A., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 9196 
504 |a Porcheddu, A., De Luca, L., Giacomelli, G., (2009) Synlett, 13, p. 2149 
504 |a Heinecke, J.L., Khin, C., Pereira, J.C.M., Suárez, S.A., Iretskii, A.V., Doctorovich, F., Ford, P.C., (2013) J. Am. Chem. Soc., 135, p. 4007 
504 |a Álvarez, L., Suarez, S.A., Bikiel, D.E., Reboucas, J.S., Batinić-Haberle, I., Martí, M.A., Doctorovich, F., (2014) Inorg. Chem., 53, p. 7351 
504 |a Spasojevic, I., Batini-Haberle, I., Fridovich, I., (2000) Nitric Oxide, 4, p. 526 
504 |a Benon, H.J., Bielski, A., Allen, O., Schwarz, H.A., (1981) J. Am. Chem. Soc., 103, p. 3516 
504 |a Kirsch, M., Büscher, A.-M., Aker, S., Schulz, R., De Groot, H., (2009) Org. Biomol. Chem., 7, p. 1954 
504 |a Poderoso, J.J., Carreras, M.C., Schöpfer, F., Lisdero, C.L., Riobó, N.A., Giulivi, C., Boveris, A.D., Cadenas, E., (1999) Free Radic. Biol. Med., 26, p. 925 
504 |a Heinecke, J., Ford, P.C., (2010) Coord. Chem. Rev., 254, p. 235 
504 |a Van Der Zee, J., Van Den Broek, P.J.A., (1998) Free Radic. Biol. Med., 25, p. 282 
504 |a Yenes, S., Messeguer, A., (1999) Tetrahedron, 55, p. 14111 
504 |a May, J.M., (2000) Free Radic. Biol. Med., 28, p. 1421 
504 |a Liu, X., Miller, M.J., Joshi, M.S., Thomas, D.D., Lancaster, J.R., (1998) Proc. Natl. Acad. Sci. U.S.A., 95, p. 2175 
504 |a Kamga, C., Krishnamurthy, S., Shiva, S., (2012) Nitric Oxide, 26, p. 251 
504 |a Gupta, K.J., Igamberdiev, A.U., Manjunatha, G., Segu, S., Moran, J.F., Neelawarne, B., Bauwe, H., Kaiser, W.M., (2011) Plant Sci., 181, p. 520 
504 |a Shiva, S., Huang, Z., Grubina, R., Sun, J., Ringwood, L.A., MacArthur, P.H., Xu, X., Gladwin, M.T., (2007) Circ. Res., 100, p. 654 
504 |a Chouchani, E.T., Methner, C., Nadtochiy, S.M., Logan, A., Pell, V.R., Ding, S., James, A.M., Murphy, M.P., (2013) Nat. Med., 19, p. 753 
506 |2 openaire  |e Política editorial 
520 3 |a The role of NO in biology is well established. However, an increasing body of evidence suggests that azanone (HNO), could also be involved in biological processes, some of which are attributed to NO. In this context, one of the most important and yet unanswered questions is whether and how HNO is produced in vivo. A possible route concerns the chemical or enzymatic reduction of NO. In the present work, we have taken advantage of a selective HNO sensing method, to show that NO is reduced to HNO by biologically relevant alcohols with moderate reducing capacity, such as ascorbate or tyrosine. The proposed mechanism involves a nucleophilic attack to NO by the alcohol, coupled to a proton transfer (PCNA: proton-coupled nucleophilic attack) and a subsequent decomposition of the so-produced radical to yield HNO and an alkoxyl radical. (Graph Presented). © 2015 American Chemical Society.  |l eng 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina 
593 |a Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Paraje El Pozo, Santa Fe, 3000, Argentina 
593 |a Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, Erlangen, 91058, Germany 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Buenos Aires, C1428EGA, Argentina 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a ALKOXYL RADICALS 
690 1 0 |a BIOLOGICAL MEDIA 
690 1 0 |a BIOLOGICAL PROCESS 
690 1 0 |a ENZYMATIC REDUCTION 
690 1 0 |a IN-VIVO 
690 1 0 |a NUCLEOPHILIC ATTACK 
690 1 0 |a REDUCING CAPACITY 
690 1 0 |a AMINO ACIDS 
690 1 0 |a ALCOHOL DERIVATIVE 
690 1 0 |a ASCORBIC ACID 
690 1 0 |a AZANONE 
690 1 0 |a INDUCIBLE NITRIC OXIDE SYNTHASE 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a NITRIC OXIDE DONOR 
690 1 0 |a TYROSINE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ALCOHOL DERIVATIVE 
690 1 0 |a ALKOXYL RADICAL 
690 1 0 |a ASCORBIC ACID 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a NITROGEN OXIDE 
690 1 0 |a NITROXYL 
690 1 0 |a TYROSINE 
690 1 0 |a ANIMAL CELL 
690 1 0 |a AQUEOUS SOLUTION 
690 1 0 |a ARTICLE 
690 1 0 |a BOVINAE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DECOMPOSITION 
690 1 0 |a DIMERIZATION 
690 1 0 |a ELECTRON SPIN RESONANCE 
690 1 0 |a ENDOTHELIUM CELL 
690 1 0 |a IMMUNOCOMPETENT CELL 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a KINETICS 
690 1 0 |a MACROPHAGE 
690 1 0 |a NERVE CELL 
690 1 0 |a NONHUMAN 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 
690 1 0 |a NUCLEOPHILICITY 
690 1 0 |a OXIDATION REDUCTION POTENTIAL 
690 1 0 |a PROTON COUPLED NUCLEOPHILIC ATTACK 
690 1 0 |a PROTON TRANSPORT 
690 1 0 |a REACTION ANALYSIS 
690 1 0 |a REDUCTION 
690 1 0 |a TAUTOMER 
690 1 0 |a ANIMAL 
690 1 0 |a BOVINE 
690 1 0 |a CHEMISTRY 
690 1 0 |a METABOLISM 
690 1 0 |a OXIDATION REDUCTION REACTION 
690 1 0 |a ALCOHOLS 
690 1 0 |a ANIMALS 
690 1 0 |a ASCORBIC ACID 
690 1 0 |a CATTLE 
690 1 0 |a ENDOTHELIAL CELLS 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a NITROGEN OXIDES 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a TYROSINE 
700 1 |a Neuman, N.I. 
700 1 |a Muñoz, M. 
700 1 |a Álvarez, L. 
700 1 |a Bikiel, D.E. 
700 1 |a Brondino, Carlos Dante 
700 1 |a Ivanović-Burmazović, I. 
700 1 |a Miljkovic, J.L. 
700 1 |a Filipovic, M.R. 
700 1 |a Martí, M.A. 
700 1 |a Doctorovich, F. 
773 0 |d American Chemical Society, 2015  |g v. 137  |h pp. 4720-4727  |k n. 14  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927940639&doi=10.1021%2fja512343w&partnerID=40&md5=2daef8c955401c415a996d78be9b1c46  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ja512343w  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v137_n14_p4720_Suarez  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v137_n14_p4720_Suarez  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v137_n14_p4720_Suarez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI