Hierarchical bioglass scaffolds: Introducing the "milky way" for templated bioceramics

Free standing hierarchical bioglass scaffolds were prepared by the ISISA (ice-segregation-induced self-assembly) method. Commercial low-cost precursors such as Ludox® HS-40 and cow milk were employed as the source of SiO2 and biominerals (Ca(ii), P(v), Na(i) and K(i)), respectively. Then, in a singl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Onna, D.
Otros Autores: Minaberry, Y., Jobbágy, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09487caa a22011297a 4500
001 PAPER-13461
003 AR-BaUEN
005 20230518204349.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84926651045 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JMCBD 
100 1 |a Onna, D. 
245 1 0 |a Hierarchical bioglass scaffolds: Introducing the "milky way" for templated bioceramics 
260 |b Royal Society of Chemistry  |c 2015 
270 1 0 |m Jobbágy, M.; Laboratorio de Superficies y Materiales Funcionales INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Hench, L.L., (2006) J. Mater. Sci.: Mater. Med., 17, pp. 967-978 
504 |a Arcos, D., Vallet-Regí, M., (2010) Acta Biomater., 6, pp. 2874-2888 
504 |a Jones, J.R., (2013) Acta Biomater., 9, pp. 4457-4486 
504 |a Day, R.M., Boccaccini, A.R., Shurey, S., Roether, J.A., Forbes, A., Hench, L.L., Gabe, S.M., (2004) Biomaterials, 25, pp. 5857-5866 
504 |a Day, R.M., (2005) Tissue Eng., 11, pp. 768-777 
504 |a Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., Polak, J.M., (2001) J. Biomed. Mater. Res., 55, pp. 151-157 
504 |a Xynos, I.D., Hukkanen, M.V.J., Batten, J.J., Buttery, L.D., Hench, L.L., Polak, J.M., (2000) Calcif. Tissue Int., 67, pp. 321-329 
504 |a Roether, J.A., Boccaccini, A.R., Hench, L.L., Maquet, V., Gautier, S., Jerome, R., (2002) Biomaterials, 23, pp. 3871-3878 
504 |a Gutierrez, M.C., Jobbagy, M., Rapun, N., Ferrer, M.L., Del Monte, F., (2006) Adv. Mater., 18, pp. 1137-1140 
504 |a Gutierrez, M.C., Garcia-Carvajal, Z.Y., Jobbágy, M., Yuste, L., Rojo, F., Abrusci, C., Catalina, F., Ferrer, M.L., (2007) Chem. Mater., 19, pp. 1968-1973 
504 |a Gutierrez, M.C., Garcia-Carvajal, Z.Y., Jobbagy, M., Rubio, T., Yuste, L., Rojo, F., Ferrer, M.L., Del Monte, F., (2007) Adv. Funct. Mater., 17, pp. 3505-3513 
504 |a Gutierrez, M.C., Ferrer, M.L., Del Monte, F., (2008) Chem. Mater., 20, pp. 634-648 
504 |a Gutiérrez, M.C., Jobbágy, M., Ferrer, M.L., Del Monte, F., (2008) Chem. Mater., 20, pp. 11-13 
504 |a Jones, J.R., Ehrenfried, L.M., Hench, L.L., (2006) Biomaterials, 27, pp. 964-973 
504 |a Ohtsuki, C., Kokubo, T., Yamamuro, T., (1992) J. Non-Cryst. Solids, 143, pp. 84-92 
504 |a Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R., (2006) Biomaterials, 27, pp. 3413-3431 
504 |a Kokubo, T., Kim, H.M., Kawashita, M., (2003) Biomaterials, 24, pp. 2161-2175 
504 |a Yan, X.X., Yu, C.Z., Zhou, X.F., Tang, J.W., Zhao, D.Y., (2004) Angew. Chem., Int. Ed., 43, pp. 5980-5984 
504 |a Lopez-Noriega, A., Arcos, D., Izquierdo-Barba, I., Sakamoto, Y., Terasaki, O., Vallet-Regi, M., (2006) Chem. Mater., 18, pp. 3137-3144 
504 |a Arcos, D., Lopez-Noriega, A., Ruiz-Hernandez, E., Terasaki, O., Vallet-Regi, M., (2009) Chem. Mater., 21, pp. 1000-1009 
504 |a Ostomel, T.A., Shi, Q.H., Tsung, C.K., Liang, H.J., Stucky, G.D., (2006) Small, 2, pp. 1261-1265 
504 |a Hall, S.R., Walsh, D., Green, D., Oreffo, R., Mann, S., (2003) J. Mater. Chem., 13, pp. 186-190 
504 |a Jones, J.R., Tsigkou, O., Coates, E.E., Stevens, M.M., Polak, J.M., Hench, L.L., (2007) Biomaterials, 28, pp. 1653-1663 
504 |a Han, X., Li, X.F., Lin, H.M., Ma, J., Chen, X., Bian, C.H., Wu, X.D., Qu, F.Y., (2014) J. Sol-Gel Sci. Technol., 70, pp. 33-39 
504 |a Qian, J.M., Kang, Y.H., Wei, Z.L., Zhang, W., (2009) Mater. Sci. Eng., C: Biomimetic Supramol. Syst., 29, pp. 1361-1364 
504 |a Li, N., Jie, Q., Zhu, S.M., Wang, R.D., (2004) Mater. Lett., 58, pp. 2747-2750 
504 |a Li, N., Jie, Q., Zhu, S.M., Wang, R.D., (2005) Ceram. Int., 31, pp. 641-646 
504 |a Kim, H.W., Kim, H.E., Knowles, J.C., (2006) Adv. Funct. Mater., 16, pp. 1529-1535 
504 |a Yun, H.S., Kim, S.E., Hyeon, Y.T., (2007) Chem. Commun., pp. 2139-2141 
504 |a Yun, H.S., Kim, S.E., Hyun, Y.T., Heo, S.J., Shin, J.W., (2007) Chem. Mater., 19, pp. 6363-6366 
504 |a Minaberry, Y., Jobbagy, M., (2011) Chem. Mater., 23, pp. 2327-2332 
504 |a Kim, J.W., Tazumi, K., Okaji, R., Ohshima, M., (2009) Chem. Mater., 21, pp. 3476-3478 
504 |a Mukai, S.R., Nishihara, H., Tamon, H., (2008) Microporous Mesoporous Mater., 116, pp. 166-170 
504 |a Nishihara, H., Iwamura, S., Kyotani, T., (2008) J. Mater. Chem., 18, pp. 3662-3670 
504 |a Deville, S., (2008) Adv. Eng. Mater., 10, pp. 155-169 
504 |a Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., Guizard, C., (2009) Nat. Mater., 8, pp. 966-972 
504 |a Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., Guizard, C., (2009) J. Am. Ceram. Soc., 92, pp. 2489-2496 
504 |a Boccaccini, A.R., Chen, Q., Lefebvre, L., Gremillard, L., Chevalier, J., (2007) Faraday Discuss., 136, pp. 27-44 
504 |a Kokubo, T., Takadama, H., (2006) Biomaterials, 27, pp. 2907-2915 
504 |a Deville, S., (2013) J. Mater. Res., 28, pp. 2202-2219 
504 |a Deville, S., Saiz, E., Tomsia, A.P., (2007) Acta Mater., 55, pp. 1965-1974 
504 |a Hortiguela, M.J., Gutierrez, M.C., Aranaz, I., Jobbagy, M., Abarrategi, A., Moreno-Vicente, C., Civantos, A., Del Monte, F., (2008) J. Mater. Chem., 18, pp. 5933-5940 
504 |a Nishihara, H., Mukai, S.R., Yamashita, D., Tamon, H., (2005) Chem. Mater., 17, pp. 683-689 
504 |a Arcos, D., Greenspan, D.C., Vallet-Regí, M., (2002) Chem. Mater., 14, pp. 1515-1522 
504 |a Bretcanu, O., Samaille, C., Boccaccini, A.R., (2008) J. Mater. Sci., 43, pp. 4127-4134 
504 |a Von Doernberg, M.C., Von Rechenberg, B., Bohner, M., Grunenfelder, S., Van Lenthe, G.H., Muller, R., Gasser, B., Auer, J., (2006) Biomaterials, 27, pp. 5186-5198 
504 |a Hollister, S.J., (2005) Nat. Mater., 4, pp. 518-524 
504 |a Pereira, M.M., Clark, A.E., Hench, L.L., (1994) J. Biomed. Mater. Res., 28, pp. 693-698 
504 |a Fowler, B.O., (1974) Inorg. Chem., 13, pp. 207-214 
504 |a Fowler, B.O., (1974) Inorg. Chem., 13, pp. 194-207 
504 |a Andersson, J., Johannessen, E., Areva, S., Baccile, N., Azaïs, T., Lindén, M., (2007) J. Mater. Chem., 17, pp. 463-468 
504 |a Lao, J., Nedelec, J.M., Jallot, E., (2008) J. Phys. Chem. C, 112, pp. 9418-9427 
504 |a López-Noriega, A., Arcos, D., Izquierdo-Barba, I., Sakamoto, Y., Terasaki, O., Vallet-Regí, M., (2006) Chem. Mater., 18, pp. 3137-3144 
504 |a Yan, X., Huang, X., Yu, C., Deng, H., Wang, Y., Zhang, Z., Qiao, S., Zhao, D., (2006) Biomaterials, 27, pp. 3396-3403 
504 |a Ohtsuki, C., Kokubo, T., Takatsuka, K., Yamamuro, T., (1991) J. Ceram. Soc. Jpn., 99, pp. 1-6 
520 3 |a Free standing hierarchical bioglass scaffolds were prepared by the ISISA (ice-segregation-induced self-assembly) method. Commercial low-cost precursors such as Ludox® HS-40 and cow milk were employed as the source of SiO2 and biominerals (Ca(ii), P(v), Na(i) and K(i)), respectively. Then, in a single macroscopic piece, three levels of porosity coexist due to the simultaneous templating effect of ice (macropores), milk (50-200 nm mesopores) and the voids left between preformed Ludox® nano building blocks (2-5 nm mesopores). These low cost and green biological nanotemplates, coupled with the ISISA texturing method, allows the preparation of free standing bioglass monoliths, with hierarchical porosity. The effect of the main preparative variables on the final texture is explored; in vitro biomineralization revealed a well-distributed hydroxyapatite-like nanoparticulated layer within 24 h of exposure to a simulated body fluid. This journal is © 2015 The Royal Society of Chemistry.  |l eng 
593 |a Laboratorio de Superficies y Materiales Funcionales INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a BIOMINERALIZATION 
690 1 0 |a POROSITY 
690 1 0 |a SCAFFOLDS 
690 1 0 |a SELF ASSEMBLY 
690 1 0 |a BIOGLASS SCAFFOLDS 
690 1 0 |a HIERARCHICAL POROSITY 
690 1 0 |a ICE SEGREGATION INDUCED SELF ASSEMBLIES 
690 1 0 |a LOW-COST PRECURSOR 
690 1 0 |a NANOBUILDING BLOCKS 
690 1 0 |a NANOTEMPLATES 
690 1 0 |a SIMULATED BODY FLUIDS 
690 1 0 |a TEMPLATING EFFECTS 
690 1 0 |a BIOCERAMICS 
700 1 |a Minaberry, Y. 
700 1 |a Jobbágy, M. 
773 0 |d Royal Society of Chemistry, 2015  |g v. 3  |h pp. 2971-2977  |k n. 15  |p J. Mater. Chem. B  |x 20507518  |t Journal of Materials Chemistry B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926651045&doi=10.1039%2fc5tb00138b&partnerID=40&md5=cceac573530014b96cc0f985923eaad1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c5tb00138b  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_20507518_v3_n15_p2971_Onna  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20507518_v3_n15_p2971_Onna  |y Registro en la Biblioteca Digital 
961 |a paper_20507518_v3_n15_p2971_Onna  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74414