Variations in the levels of cyclic adenosine 3′:5′-monophosphate and in the activities of adenylate cyclase and cyclic adenosine 3t: ́5′-monophosphate phosphodiesterase during aerobic morphogenesis of Mucor rouxii

Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cantore, M.L
Otros Autores: Galvagno, M.A, Passeron, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1980
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07472caa a22009857a 4500
001 PAPER-1339
003 AR-BaUEN
005 20230518203041.0
008 190411s1980 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0018977335 
024 7 |2 cas  |a 3',5' cyclic nucleotide phosphodiesterase, 9040-59-9; adenylate cyclase, 9012-42-4; cyclic AMP, 60-92-4; manganese, 16397-91-4, 7439-96-5; 3',5'-Cyclic-Nucleotide Phosphodiesterase, EC 3.1.4.17; Adenylate Cyclase, EC 4.6.1.1; Cyclic AMP, 60-92-4; Manganese, 7439-96-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ABBIA 
100 1 |a Cantore, M.L. 
245 1 0 |a Variations in the levels of cyclic adenosine 3′:5′-monophosphate and in the activities of adenylate cyclase and cyclic adenosine 3t: ́5′-monophosphate phosphodiesterase during aerobic morphogenesis of Mucor rouxii 
260 |c 1980 
270 1 0 |m Cantore, M.L.; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Bartnicki-Garcia, Nickerson, (1962) J. Bacteriol, 84, pp. 841-858 
504 |a Bartnicki-Garcia, (1968) J. Bacteriol, 96, pp. 1586-1594 
504 |a Friedenthal, Epstein, Passeron, (1974) J. Gen. Microbiol, 82, pp. 15-24 
504 |a Paveto, Epstein, Passeron, (1975) Arch. Biochem. Biophys, 169, pp. 449-457 
504 |a Paznokas, Sypherd, (1975) J. Bacteriol, 124, pp. 134-139 
504 |a Bartnicki-Garcia, Nickerson, (1962) J. Bacteriol, 84, pp. 829-840 
504 |a Haidle, Stork, (1966) J. Bacteriol, 92, pp. 1236-1244 
504 |a Terenzi, Roselino, Passeron, (1971) Eur. J. Biochem, 18, pp. 342-358 
504 |a Flawia, Torres, (1972) J. Biol. Chem, 247, pp. 68-73 
504 |a White, (1974) Methods in Enzymology, 38 C, p. 41. , 3rd Ed., J.G. Hardman, Academic Press, New York/London 
504 |a Bray, (1960) Anal. Biochem, 1, pp. 279-285 
504 |a Hidaka, Asano, (1976) Biochim. Biophys. Acta, 429, pp. 485-497 
504 |a Fiske, Subbarow, (1925) J. Biol. Chem, 66, pp. 375-400 
504 |a Rutten, Schoot, DePont, (1973) Biochim. Biophys. Acta, 315, pp. 378-383 
504 |a Wayne, Rosen, (1974) Proc. Nat. Acad. Sci. USA, 71, pp. 1436-1440. , 3rd Ed 
504 |a Steiner, Parker, Kipnis, (1972) J. Biol. Chem, 247, pp. 1106-1113 
504 |a Lowry, Rosebrough, Farr, Randall, (1951) J. Biol. Chem, 193, pp. 265-275 
504 |a Dulley, Grieve, (1975) Anal. Biochem, 64, pp. 136-141 
504 |a Symons, (1977) Nucleic Acid Res, 4, pp. 4347-4355 
504 |a Rodbell, Birnbaumer, Phol, Krans, (1971) J. Biol. Chem, 246, pp. 1877-1882 
504 |a Pfeuffer, Helmreich, (1975) J. Biol. Chem, 250, pp. 867-876 
504 |a Butcher, Sutherland, (1962) J. Biol. Chem, 237, pp. 1244-1250 
504 |a Lee, (1978) J. Gen. Microbiol, 107, pp. 177-181 
504 |a Chang, (1968) Science, 161, pp. 57-59 
504 |a Scott, Solomon, (1973) Biochem. Biophys. Res. Commun, 53, pp. 1024-1030 
504 |a Murray, Spiszman, Atkinson, (1971) Science, 171, pp. 496-498 
504 |a Uno, Ishikawa, (1973) J. Bacteriol, 113, pp. 1249-1255 
504 |a Cheung, (1967) Biochemistry, 6, pp. 1079-1087 
504 |a Speziali, Van Wijk, (1971) Biochim. Biophys. Acta, 235, pp. 466-472 
504 |a Gomes, Mennucci, Maia, (1978) Biochim. Biophys. Acta, 541, pp. 190-198 
504 |a Thompson, Appleman, (1971) Biochemistry, 10, pp. 311-316 
504 |a Russell, Terasaki, Appleman, (1973) J. Biol. Chem, 248, pp. 1334-1340 
520 3 |a Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate phosphodiesterase activity, 60% of which is soluble. This activity shows characteristic low Km (1 μm) for cyclic AMP and does not hydrolyze cyclic guanosine 3′:5′-monophosphate. It requires Mn2+ ions for maximal activity and is not inhibited by methylxanthines or activated by imidazole. Both enzymatic activities vary during the aerobic life cycle of the fungus. The spores have the highest levels of adenylate cyclase and cAMP phosphodiesterase, which decrease during the aerobic development. At the round cell stage, phosphodiesterase activity reaches 40% of the activity of the spores and varies only slightly thereafter. At this stage the specific activity of adenylate cyclase is 25% of the activity of ungerminated spores, and from this stage on, the activity increases up to the end of the logarithmic phase. Intracellular levels of cyclic AMP have been measured during aerobic germination. The variations of the intracellular level are tentatively explained by unequal variations in the activities of adenylate cyclase and cyclic AMP phosphodiesterase. A continuous increase of the extracellular cyclic AMP level during aerobic development has also been found, which cannot be accounted for solely by variations in the cyclase and diesterase activities. © 1980.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: ’ This investigation was sponsored in part by grants from the Consejo National de Investigaciones Cientif-icas y Tecnicas (CONICET, Argentina) and from the Comision National de Energia Atomica. 2 S.P. is a Career Investigator of CONICET. a Abbreviations used: CAMP, cyclic AMP; cGMP, cyclic GMP; Gpp(NH)p, guanosine 5’-(P,y-imido)- 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a 3',5' CYCLIC NUCLEOTIDE PHOSPHODIESTERASE 
690 1 0 |a ADENYLATE CYCLASE 
690 1 0 |a CYCLIC AMP 
690 1 0 |a MANGANESE 
690 1 0 |a AEROBIC METABOLISM 
690 1 0 |a ARTICLE 
690 1 0 |a CELL FRACTIONATION 
690 1 0 |a FUNGUS SPORE 
690 1 0 |a METABOLISM 
690 1 0 |a MORPHOGENESIS 
690 1 0 |a MUCOR 
690 1 0 |a 3',5'-CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE 
690 1 0 |a ADENYLATE CYCLASE 
690 1 0 |a CYCLIC AMP 
690 1 0 |a MANGANESE 
690 1 0 |a MORPHOGENESIS 
690 1 0 |a MUCOR 
690 1 0 |a SPORES, FUNGAL 
690 1 0 |a SUBCELLULAR FRACTIONS 
650 1 7 |2 spines  |a AEROBIOSIS 
700 1 |a Galvagno, M.A. 
700 1 |a Passeron, S. 
773 0 |d 1980  |g v. 199  |h pp. 312-320  |k n. 2  |p Arch. Biochem. Biophys.  |x 00039861  |w (AR-BaUEN)CENRE-1377  |t Archives of Biochemistry and Biophysics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018977335&doi=10.1016%2f0003-9861%2880%2990286-6&partnerID=40&md5=87e582f28c9c14cb4efe8cc1201548f2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/0003-9861(80)90286-6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00039861_v199_n2_p312_Cantore  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00039861_v199_n2_p312_Cantore  |y Registro en la Biblioteca Digital 
961 |a paper_00039861_v199_n2_p312_Cantore  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 62292