Tunable plasmonic enhancement of light scattering and absorption in graphene-coated subwavelength wires

The electromagnetic response of subwavelength wires coated with a graphene monolayer illuminated by a linearly polarized plane waves is investigated. The results show that the scattering and extinction cross-sections of the coated wire can be dramatically enhanced when the incident radiation resonan...

Descripción completa

Detalles Bibliográficos
Autor principal: Riso, M.
Otros Autores: Cuevas, Mauro, Depine, Ricardo Angel
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Institute of Physics Publishing 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09620caa a22009977a 4500
001 PAPER-13377
003 AR-BaUEN
005 20250220095938.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84936803297 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Riso, M. 
245 1 0 |a Tunable plasmonic enhancement of light scattering and absorption in graphene-coated subwavelength wires 
260 |b Institute of Physics Publishing  |c 2015 
504 |a Guo, C.F., Sun, T.Y., Cao, F., Liu, Q., Ren, Z.F., Metallic nanostructures for light trapping in energy-harvesting devices (2014) Light: Sci. Appl., 3, p. e161 
504 |a Lagendijk, A., Van Tiggelen, B., Wiersma, D., Fifty years of Anderson localization (2009) Phys. Today, 62, p. 24 
504 |a Hashemi, A., Hosseini-Farzad, M., Montakhaba, A., Emergence of semi-localized Anderson modes in a disordered photonic crystal as a result of overlap probability (2010) Eur. Phys. J., 77, pp. 147-152 
504 |a John, S., Strong localization of photons in certain disordered dielectric superlattices (1987) Phys. Rev. Lett., 58, pp. 2486-2489 
504 |a Fan, X., Zheng, W., Singh, D.J., Light scattering and surface plasmons on small spherical particles (2014) Light: Sci. Appl., 3, p. e179 
504 |a Bliokh, K.Y., Bliokh, Y.P., Freilikher, V., Savelev, S., Nori, F., Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media (2008) Rev. Mod. Phys., 80, p. 1201 
504 |a Hutter, E., Fendler, J.H., Exploitation of localized surface plasmon resonance (2008) Adv. Mater., 16, pp. 1685-1706 
504 |a Khatua, S., Paulo, P.P.R., Yuan, H., Gupta, A., Zijlstra, P., Orrit, M., Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods (2014) ACS Nano., 8, pp. 4440-4449 
504 |a Talley, C.E., Jackson, J.B., Oubre, C., Grady, N.K., Hollars, C.W., Lane, S.M., Huser, T.R., Halas, N.J., Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates (2005) Nano. Lett., 5, pp. 1569-1574 
504 |a West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A., Searching for better plasmonic materials (2010) Laser & Photonics Reviews, 4, pp. 795-808 
504 |a Boltasseva, A., Atwater, H.A., Low-loss plasmonic metamaterials (2011) Science, 331, pp. 290-291 
504 |a Boltasseva, A., Atwater, H.A., Plasmonics in graphene at infrared frequencies (2009) Phys. Rev., 80 
504 |a Boltasseva, A., Atwater, H.A., Plasmons in graphene: Recent progress and applications (2013) Mater. Sci. Engin., 74, pp. 351-376 
504 |a Jablan, M., Buljan, H., Soljacic, M., Plasmonics in graphene at infrared frequencies (2009) Phys. Rev., 80 
504 |a Nikitin, A.Y., Guinea, F., García-Vidal, F.J., Martín-Moreno, L., Edge and waveguide terahertz surface plasmon modes in graphene microribbons (2011) Phys. Rev., 84 
504 |a Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F.H., García De Abajo, F.J., Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons (2012) ACS Nano., 6, pp. 431-440 
504 |a Liu, P., Zhang, X., Ma, Z., Cai, W., Wang, L., Xu, J., Surface plasmon modes in graphene wedge and groove waveguides (2013) Opt. Express, 21, pp. 32432-32440 
504 |a Bludov, Y.V., Vasilevskiy, M.I., Peres, N.M.R., Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene (2010) EPL, 92 (6), p. 68001 
504 |a Slipchenko, T.M., Nesterov, M.L., Martín-Moreno, L., Nikitin, A.Y., Analytical solution for the diffraction of an electromagnetic wave by a graphene grating (2013) J. Opt., 15 
504 |a Gao, W., Shi, G., Jin, Z., Shu, J., Zhang, Q., Vajtai, R., Ajayan, P.M., Xu, Q., Excitation and active control of propagating surface plasmon polaritons in graphene (2013) Nano. Lett., 13, pp. 3698-3702 
504 |a Peres, N.M.R., Bludov, Y.V., Ferreira, A., Vasilevskiy, M.I., Exact solution for square-wave grating covered with graphene: Surface plasmon-polaritons in the terahertz range (2013) J. Phys.: Condens. Matter, 25 (12) 
504 |a Madani, A., Entezar, S.R., Optical properties of one-dimensional photonic crystals containing graphene sheets (2013) Physica, 431, pp. 1-5 
504 |a Zhang, Y., Wu, Z., Cao, Y., Zhang, H., Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal (2015) Opt. Commun., 338, pp. 168-173 
504 |a Zhu, B., Ren, G., Gao, Y., Yang, Y., Lian, Y., Jian, S., Graphene-coated tapered nanowire infrared probe: A comparison with metal-coated probes (2014) Opt. Express, 22, p. 24096 
504 |a Gao, Y., Ren, G., Zhu, B., Liu, H., Lian, Y., Jian, S., Analytical model for plasmon modes in graphene-coated nanowire (2014) Opt. Express, 22, p. 24322 
504 |a Gao, Y., Ren, G., Zhu, B., Wang, J., Jian, S., Single-mode graphene-coated nanowire plasmonic waveguide (2014) Opt. Lett., 39, p. 5909 
504 |a Huang, Z.-R., Wang, L.-L., Sun, B., He, M.-D., Liu, J.-Q., Li, H.-J., Zhai, X., A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface (2014) J. Opt., 16 
504 |a Christensen, T., Jauho, A.-P., Wubs, M., Mortensen, N., Localized plasmons in graphene-coated nanospheres (2015) Phys. Rev., 91 
504 |a He, X., Liu, Z., Wang, D.N., Yang, M., Hu, T.Y., Tian, J.-G., Saturable absorber based on graphene-coveredmicrofiber (2013) IEEE Photon. Technol. Lett., 25, pp. 1392-1394 
504 |a He, X., Zhang, X., Zhang, H., Xu, M., Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption (2014) IEEE J. Sel. Top. Quantum Electron., 20 
504 |a Wu, Y., Yao, B., Zhang, A., Rao, Y., Wang, Z., Cheng, Y., Gong, Y., Chiang, K.S., Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing (2014) Opt. Lett., 39, pp. 1235-1237 
504 |a Li, W., Ultrafast all-optical graphene modulator (2014) Nano. Lett, 14, pp. 955-959 
504 |a Yang, H., Hou, Z., Zhou, N., He, B., Cao, J., Kuang, Y., Graphene-encapsulated SnO2 hollow spheres as high-performance anode materials for lithium ion batteries (2014) Ceram. Int., 40, p. 13903 
504 |a Lee, J.-S., Kim, S.-I., Yoon, J.-C., Jang, J.-H., Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor (2013) ACS Nano., 7, p. 6047 
504 |a Falkovsky, L.A., Optical properties of graphene and IV-VI semiconductors (2008) Phys. Uspekhi, 51 (9), pp. 887-897 
504 |a Milkhailov, S.A., Siegler, K., New electromagnetic mode in graphene (2007) Phys. Rev. Lett., 99 
504 |a Van De Hulst, H.C., (1957) Light Scattering by Small Particles 
504 |a Bohren, C.F., Huffman, D.R., (1983) Absorption and Scattering of Light by Small Particles 
504 |a Schimpf, A., Thakkar, N., Gunthardt, C., Masiello, D., Gamelin, D., Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals (2014) ACS Nano., 8, p. 1065 
506 |2 openaire  |e Política editorial 
520 3 |a The electromagnetic response of subwavelength wires coated with a graphene monolayer illuminated by a linearly polarized plane waves is investigated. The results show that the scattering and extinction cross-sections of the coated wire can be dramatically enhanced when the incident radiation resonantly excites localized surface plasmons. The enhancements occur for p-polarized incident waves and for excitation frequencies that correspond to complex poles in the coefficients of the multipole expansion for the scattered field. By dynamically tuning the chemical potential of graphene, the spectral position of the enhancements can be chosen over a wide range. © 2015 IOP Publishing Ltd.  |l eng 
593 |a Departamento de Fisica, FCEN, Universidad de Buenos Aires, Pabellón I, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a GRAPHENE PLASMONICS 
690 1 0 |a LOCALIZED SURFACE PLASMONS 
690 1 0 |a MIE SCATTERING 
690 1 0 |a PLASMONIC PARTICLES 
690 1 0 |a SCATTERING 
690 1 0 |a ELECTROMAGNETIC WAVE POLARIZATION 
690 1 0 |a GRAPHENE 
690 1 0 |a LIGHT SCATTERING 
690 1 0 |a PLASMONS 
690 1 0 |a SCATTERING 
690 1 0 |a SURFACE PLASMON RESONANCE 
690 1 0 |a WIRE 
690 1 0 |a ELECTROMAGNETIC RESPONSE 
690 1 0 |a EXTINCTION CROSS SECTION 
690 1 0 |a LIGHT SCATTERING AND ABSORPTIONS 
690 1 0 |a LOCALIZED SURFACE PLASMON 
690 1 0 |a MIE SCATTERING 
690 1 0 |a MULTIPOLE EXPANSIONS 
690 1 0 |a PLASMONIC PARTICLES 
690 1 0 |a PLASMONICS 
690 1 0 |a SURFACE SCATTERING 
700 1 |a Cuevas, Mauro 
700 1 |a  Depine, Ricardo Angel 
773 0 |d Institute of Physics Publishing, 2015  |g v. 17  |k n. 7  |p J. Opt.  |x 20408978  |t Journal of Optics (United Kingdom) 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84936803297&doi=10.1088%2f2040-8978%2f17%2f7%2f075001&partnerID=40&md5=bacc3a40a313ad43f3adcc4312bf52ad  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/2040-8978/17/7/075001  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_20408978_v17_n7_p_Riso  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20408978_v17_n7_p_Riso  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_20408978_v17_n7_p_Riso  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion